A Plant Growth-Promoting Pseudomonas fluorescens GL20: Mechanism for Disease Suppression, Outer Membrane Receptors for Ferric Siderophore, and Genetic Improvement for Increased Biocontrol Efficacy

  • LIM, HO SEONG (Department of Applied Microbiology, Yeungnam University) ;
  • JUNG MOK LEE (Department of Applied Microbiology, Yeungnam University) ;
  • SANG DAL KIM (Department of Applied Microbiology, Yeungnam University)
  • Published : 2002.04.01

Abstract

Pseudomonas fluorescens GL20 is a plant growth-promoting rhizobacterium that produces a large amount of hydroxamate siderophore under iron-limited conditions. The strain GL20 considerably inhibited the spore germination and hyphal growth of a plant pathogenic fungus, Fusarium solani, when iron was limited, significantly suppressed the root-rot disease on beans caused by F. solani, and enhanced the plant growth. The mechanism for the beneficial effect of strain GL20 on the disease suppression was due to the siderophore production, evidenced by mutant strains derived from the strain. Analysis of the outer membrane protein profile revealed that the growth of strain GL20 induced the synthesis of specific iron-regulated outer membrane proteins with molecular masses of 85- and 90 kDa as the high-affinity receptors for the ferric siderophore. In addition, a cross-feeding assay revealed the presence of multiple inducible receptors for heterologous siderophores in the strain. In order to induce increased efficacy and potential in biological control of plant disease, a siderophore-overproducing mutant, GL20-S207, was prepared by NTG mutagenesis. The mutant GL20-S207 produced nearly 2.3 times more siderophore than the parent strain. In pot trials of beans with F. solani, the mutant increased plant growth up to 1.5 times compared with that of the parent strain. These results suggest that the plant growth-promoting P. fluorescens GL20 and the genetically bred P. fluorescens GL20-S207 can play an important role in the biological control of soil-borne plant diseases in the rhizosphere.

Keywords

References

  1. Arnow, L. E. 1937. Colorimetric determination of the components of 3,4-dihydroxyphenylalanine-tyrosine mixtures. J. Biol. Chem. 118: 531-537
  2. Becker, J. O. and R. J. Cook. 1988. Role of siderophores in suppression of Pythium species and production of increasedgrowth response of wheat by fluorescent pseudomonads. Phytopathol. 78: 778-782
  3. Biedermann, G. and P. Schindler. 1957. On the solubility of precipitated iron(III) hydroxide. Acta Chem. Scand. 11: 731-740
  4. Bitter, W., J. D. Marugg, L. A. de Weger, J. Tommassen, and P. J. Weisbeek. 1991. The ferric-pseudobactin receptor PupA of Pseudomonas putida WCS358: Homology to TonBdependent Escherichia coli receptors and specificity of the protein. Mol. Microbiol. 5: 647-655
  5. Brisbane, P. G. and A. D. Rovira. 1988. Mechanisms of inhibition of Gaeumannomyces graminis var. tritici by fluorescent pseudomonads. Plant Pathol. 37: 104-111
  6. Buysens, S., K. Heungens, J. Poppe, and M. Höfte. 1996. Involvement of pyochelin and pyoverdin in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl. Environ. Microbiol. 62: 865-871
  7. Cornelis, P., D. Hohnadel, and J. M. Meyer. 1989. Evidence for different pyoverdin-mediated iron uptake systems among Pseudomonas aeruginosa strains. Infect. Immun. 57: 3491- 3497
  8. Csaky, T. 1948. On the estimation of bound hydroxylamine. Acta Chem. Scand. 2: 450-454
  9. Duijff, B. J., G. Recorbet, P. A. H. M. Bakker, J. E. Loper, and P. Lemanceau. 1999. Microbial antagonism at the root level is involved in the suppression of Fusarium wilt by the combination of nonpathogenic Fusarium oxysporum Fo47 and Pseudomonas putida WCS358. Phytopathol. 89: 1073- 1079 https://doi.org/10.1094/PHYTO.1999.89.11.1073
  10. Filip, C., G. Fletcher, J. L. Wulff, and C. F. Earhart. 1973. Solubilization of the cytoplasmic membrane of Escherichia coli by the ionic detergent sodium-lauryl sarcosinate. J. Bacteriol. 115: 717-722
  11. Gensberg, K., K. Hughes, and A. W. Smith. 1992. Siderophorespecific induction of iron uptake in Pseudomonas aeruginosa. J. Gen. Microbiol. 138: 2381-2387
  12. Hamdan, H., D. M. Weller, and L. S. Thomashow. 1991. Relative importance of fluorescent siderophores and other factors in biological control of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2-79 and M4-80R. Appl. Environ. Microbiol. 57: 3270-3277
  13. Hill, D. S., J. I. Stein, N. R. Torkewitz, A. M. Morse, C. R. Howell, J. P. Pachlatko, J. O. Becker, and J. M. Ligon. 1994. Cloning of genes involved in the synthesis of pyrrolnitrin from Pseudomonas fluorescens and role of pyrrolnitrin synthesis in biological control of plant disease. Appl. Environ. Microbiol. 60: 78-85
  14. Hofte, M., S. Buysens, N. Koedam, and P. Cornelis. 1993. Zinc affects siderophore-mediated high affinity iron uptake systems in the rhizosphere Pseudomonas aeruginosa 7NSK2. Biometals 6: 85-91
  15. Howell, C. R. and R. D. Stipanovic. 1980. Suppression of Pythium ultimum induced damping-off of cotton seedlings by Pseudomonas fluorescens Pf-5 and its antibiotic, pyoluteorin. Phytopathol. 70: 712-715
  16. Jurkevitch, E., Y. Hadar, and Y. Chen. 1992. Differential siderophore utilization and iron uptake by soil and rhizosphere bacteria. Appl. Environ. Microbiol. 58: 119-124
  17. King, J. V., J. J. R. Campbell, and B. A. Eagles. 1948. Mineral requirements for fluorescin production by Pseudomonas. Can. J. Research 26C: 514-519
  18. Kloepper, J. W., J. Leong, M. Teintze, and M. N. Schroth. 1980. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286: 885-886
  19. Koster, M., W. Ovaa, W. Bitter, and P. Weisbeek. 1995. Multiple outer membrane receptors for uptake of ferric pseudobactins in Pseudomonas putida WCS358. Mol. Gen. Genet. 248: 735-743
  20. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  21. Leeman, M., F. M. den Ouden, J. A. van Pelt, F. P. M. Dirkx, H. Steijl, P. A. H. M. Bakker, and B. Schippers. 1996. Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathol. 86: 149-155 https://doi.org/10.1094/Phyto-86-149
  22. Lemanceau, P., P. A. Bakker, W. J. De Kogel, C. Alabouvette, and B. Schippers. 1992. Effect of pseudobactin 358 production by Pseudomonas putida WCS358 on suppression of fusarium wilt of carnations by nonpathogenic Fusarium oxysporum Fo47. Appl. Environ. Microbiol. 58: 2978-2982
  23. Lim, H. S. and S. D. Kim. 1997. Role of siderophores in biocontrol of Fusarium solani and enhanced growth response of bean by Pseudomonas fluorescens GL20. J. Microbiol. Biotechnol. 7: 13-20
  24. Lindsay, W. L. 1979. Chemical Equilibria in Soils. John Wiley, NY, U.S.A
  25. Loper, J. E. 1988. Role of fluorescent siderophore production in biological control of Pythium ultimum by a Pseudomonas fluorescens strain. Phytopathol. 78: 166-172 https://doi.org/10.1094/Phyto-78-166
  26. Loper, J. E. and M. D. Henkels. 1999. Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl. Environ. Microbiol. 65: 5357-5363
  27. Magazin, M. D., J. C. Moores, and J. Leong. 1986. Cloning of the gene coding for the outer membrane receptor protein for ferric pseudobactin, a siderophore from a plant growthpromoting Pseudomonas strain. J. Biol. Chem. 261: 795- 799
  28. Marugg, J. D., L. A. Weger, H. B. Nielander, M. Oorthuizen, K. Recourt, B. Lugtenberg, G. A. J. M. Hofstad, and P. J. Weisbeek. 1989. Cloning and characterization of a gene encoding an outer membrane protein required for siderophoremediated uptake of Fe$^3+$ in Pseudomonas putida WCS358. J. Bacteriol. 171: 2819-2826 https://doi.org/10.1128/jb.171.5.2819-2826.1989
  29. Meyer, J. M. and M. A. Abdallah. 1978. The fluorescent pigment of Pseudomonas fluorescens, biosynthesis, purification and physicochemical properties. J. Gen. Microbiol. 107: 319-328
  30. Meyer, J. M. and J. M. Hornsperger. 1978. Role of pyoverdinepf, the iron-binding fluorescent pigment of Pseudomonas fluorescens, in iron transport. J. Gen. Microbiol. 107: 329- 331
  31. Meyer, J. M., M. Mock, and M. A. Abdallah. 1979. Effect of iron on the protein composition of the outer membrane of fluorescent pseudomonads. FEMS Microbiol. Lett. 5: 395- 398
  32. Meyer, J. M. 1992. Exogenous siderophore-mediated iron uptake in Pseudomonas aeruginosa: Possible involvement of porin OprF in iron translocation. J. Gen. Microbiol. 138: 951-958 https://doi.org/10.1099/00221287-138-5-951
  33. Miller, J. H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, NY, U.S.A
  34. Neilands, J. B. 1982. Microbial envelope proteins related to iron. Annu. Rev. Microbiol. 36: 285-309 https://doi.org/10.1146/annurev.mi.36.100182.001441
  35. Neilands, J. B. 1981. Microbial iron compounds. Annu. Rev. Biochem. 50: 715-731 https://doi.org/10.1146/annurev.bi.50.070181.003435
  36. Ocaktan, A., I. Schalk, C. Hennard, C. Linget-Morice, P. Kyslik, A. W. Smith, P. A. Lambert, and M. A. Abdallah. 1996. Specific photoaffinity labelling of a ferripyoverdin outer membrane receptor of Pseudomonas aeruginosa. FEBS Lett. 396: 243-247
  37. Paulitz, T. C. and J. E. Loper. 1991. Lack of a role for fluorescent siderophore production in the biological control of Pythium damping-off of cucumber by a strain of Pseudomonas putida. Phytopathol. 81: 930-935
  38. Poole, K., S. Neshat, and D. Heinrichs. 1991. Pyoverdinmediated iron transport in Pseudomonas aeruginosa: Involvement of a high molecular-mass outer membrane protein. FEMS Microbiol. Lett. 78: 1-5
  39. Ross, I. L., Y. Alami, P. R. Harvey, W. Achouak, and M. H. Ryder. 2000. Genetic diversity and biological control activity of novel species of closely related Pseudomonads isolated from wheat field soils in South Australia. Appl. Environ. Microbiol. 66: 1609-1616
  40. Ryu, J. S., S. D. Lee, Y. H. Lee, S. T. Lee, D. K. Kim, S. J. Cho, S. R. Park, D. W. Bae, K. H. Park, and H. D. Yun. 2000. Screening and identification of an antifungal Pseudomonas sp. that suppresses balloon flower root rot caused by Rhizoctonia solani. J. Microbiol. Biotechol. 10: 435-440
  41. Scher, F. M. and R. Baker. 1982. Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathol. 72: 1567-1573
  42. Schwyn, B. and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56
  43. Shanahan, P., D. J. O Sullivan, P. Simpson, J. D. Glennon, and F. O Gara. 1992. Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl. Environ. Microbiol. 58: 353-358
  44. Sneh, B., M. Dupler, Y. Elad, and R. Baker. 1984. Chlamydospore germination of Fusarium oxysporum f. sp. cucumerinum as affected by fluorescent and lytic bacteria from Fusarium-suppressive soil. Phytopathol. 74: 1115- 1124
  45. Spiro, T. G. 1977. Chemistry and biochemistry of iron, pp. 23-32. In E. B. Brown, P. Aisen, J. Fielding, and R. R. Crichton (eds.), Proteins of Iron Metabolism. Grune and Stratton, NY, U.S.A
  46. Thomashow, L. S. and D. M. Weller. 1988. Role of a phenazine antibiotic from Pseudomonas fluorescens 2-97 in biological control of Gaeumannomyces graminis var. tritici. J. Bacteriol. 170: 3499-3508
  47. Voisard, C., C. Keel, D. Haas, and G. Defago. 1989. Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J. 8: 351-358
  48. Waring, W. S. and C. H. Werkman. 1942. Growth of bacteria in an iron-free medium. Arch. Biochem. 1: 303-310
  49. Weller, D. M., W. J. Howie, and R. J. Cook. 1988. Relationship between in vitro inhibition of Gaeumannomyces graminis var. tritici and suppression of take-all of wheat by fluorescent pseudomonads. Phytopathol. 78: 1094-1100
  50. Xu, G. W. and D. C. Gross. 1986. Selection of fluorescent pseudomonads antagonistic to Erwinia carotobora and suppressive of potato seed piece decay. Phytopathol. 76: 414-422