Velume Phase Transition of Poly (N-isopropylacrylamide-co-sodium methacrylate) Hydrogel Crosslinked with Poly(ethylene glycol) diacrylate

Poly(ethylene glyco1) diacrylate로 가교된 Poly(N-isopropylacrylamide) Hydrogel의 부피 상전이 특성

  • 김선아 (경북대학교 공과대학 염색공학과) ;
  • 한영아 (경북대학교 공과대학 염색공학과) ;
  • 손성옥 (경북대학교 공과대학 염색공학과) ;
  • 지병철 (경북대학교 공과대학 염색공학과)
  • Published : 2002.09.01

Abstract

The volume phase transition of poly(N-isopropylacrylamide) (PNIPAAm) and poly (N-isopropylacrylamide-co-sodium methacrylate) (P (NIPAAm-co-SMA)) hydrogels crosslinked with poly (ethylene glycol) diacrylate (PEGDA) was investigated in consideration of water content and surface area. The volume phase transition temperature of hydrogel was not affected by the concentration of crosslinking agent, which increased over 40$\^{C}$ by incorporating a small amount of SMA. Higher volume phase transition temperature was obtained when PEGAD was used as a crosslinking agent, suggesting that the chain length of crosslinking agent had a significant effect on the volume phase transition temperature. The surface area of PNIPAAm and P (NIPAAm-co-SMA) gels fell off around the volume phase transition temperature, resulting from the fact that the size of pores reduced remarkably in the course of the volume phase transition. Hence, the surface area and the pore size were considered to be important factors indicating the volume phase transition.

가교제 poly(ethylene glycol) diacrylate (PEGDA)를 사용하여 제조한 poly(N-iso-propylacrylamide) (PNIPAAm) 및 poly (N-isopropylacrylamide-co-sodium methacrylate) (P(NIPAAm-co-SMA)) hydrogels의 부피 상전이 현상을 함수율과 표면적의 변화로 고찰하였다. Hydyogel의 부피 상전이 온도는 가교제의 농도에는 영향을 받지 않았으나 공단량체인 SMA의 소량 첨가로 4$0^{\circ}C$ 이상 상승하였다. 특히 PEGDA를 가교제로 사용하였을 경우 가교 길이가 길어짐에 따라 부피 상전이 온도가 더 높게 상승하였다. PNIPAAm 및 P(NIPAAm-co-SMA) hydrogels의 표면적 역시 부피 상전이 온도를 전후하여 감소하였는데 이는 부피 상전이 과정에서 기공의 크기가 현저하게 감소하였기 때문이다. 따라서 표면적과 기공 크기의 변화가 부피 상전이를 나타내는 주요한 인자임을 알 수 있다.

Keywords

References

  1. J.Chem.Phys. v.81 Y. Hirokawa;T. Tanaka https://doi.org/10.1063/1.447548
  2. Macromolecules v.23 K. Otaka;H. Inomata;M. Konno https://doi.org/10.1021/ma00203a049
  3. Macromolecules v.23 H. Inomata;G.S. Saiito https://doi.org/10.1021/ma00224a023
  4. Macromolecules v.30 G. Bokias;D. Hourdet;I. Iliopoulous;G. Staikos;R. Audebert https://doi.org/10.1021/ma970884f
  5. J.Contr.Rel. v.6 A.S. Hoffman https://doi.org/10.1016/0168-3659(87)90083-6
  6. J.Membr.Sci. v.64 H. Feil;Y.H. Bae;J. Feijen;S.W. Kim https://doi.org/10.1016/0376-7388(91)80099-R
  7. Makromol.Chem. v.194 S. Rakeuchi;I. Omodaka
  8. Polymer(Korea) v.18 K.H. Kim;Y.J. Shin
  9. Polymer(Korea) v.18 K.H. Kim;Y.J. Shin
  10. J.Biomed.Mater.Res. v.27 T. Okano;N. Yanada;H. Sakai;Y. Sakurai https://doi.org/10.1002/jbm.820271005
  11. Biomaterials v.16 Y.G. Takei;T. Aoki;K. Sanui;N. Ogata;Y. Sakurai;T. Okano https://doi.org/10.1016/0142-9612(95)99692-F
  12. J.Biomater.Sci.Polym.Ed. v.9 A. Kikichi;M. Okuhara;F. Karikusa;Y. Sakurai;T. Okano https://doi.org/10.1163/156856298X00424
  13. J.Biomater.Sci.Polym.Ed. v.10 B.L. Vernon;S.W. Kim;Y.H. Bae https://doi.org/10.1163/156856299X00126
  14. Macromolecules v.25 H. Feil;Y.H. Bae;J. Feijen;S.W. Kim https://doi.org/10.1021/ma00046a063
  15. Macromolecules v.26 H. Feil;Y.H. Bae;J. Feijen;S.W. Kim https://doi.org/10.1021/ma00062a016
  16. J.Biomater.Sci.Polym.Ed. v.4 Y. Okuyama;R. Yoshida;K. Sakai;T. Okano;Y. Sakurai https://doi.org/10.1163/156856293X00195
  17. Makromol.Chem.Phys. v.196 G. Chen;A.S. Hoffman https://doi.org/10.1002/macp.1995.021960424
  18. Macromolecules v.28 C.S. Brazel;N.A. Peppas https://doi.org/10.1021/ma00128a007
  19. J.Contr.Rel. v.11 T. Okano;Y.H. Bae;H. Jacobs;S.W. Kim https://doi.org/10.1016/0168-3659(90)90138-J
  20. Macromolecules v.26 E. Kokufuta;Y. Zhnag;T. Tanaka;S. Mamada https://doi.org/10.1021/ma00057a027
  21. Polymer v.40 Y. Liu;J.L. Velada;M.B. Huglin https://doi.org/10.1016/S0032-3861(98)00660-0
  22. Nature v.373 G.H. Chen;A.S. Hoffman https://doi.org/10.1038/373049a0
  23. Polymer(Korea) v.25 H.K. Jo;B.S. Kim;S.T. Noh
  24. J.Contr.Rel. v.32 R. Yoshida;Y. Kaneko;K. Sakai;T. Okano;Y. Sakurai;Y.H. Bae;S.W. Kim https://doi.org/10.1016/0168-3659(94)90229-1
  25. J.Polym.Sci.Part B,Polym.Phys. v.28 Y.H. Bae;T. Okano;S.W. Kim https://doi.org/10.1002/polb.1990.090280609
  26. Adsorption Surface Area and Porisity S.J. Gregg;K.S.W. Sing