Abstract
This paper has shown that the impulse and the unit step responses of 2nd-order systems can be computed by an analytic method. Three different 2nd-order systems are investigated: the prototype system, the system with one LHP(left half plane) real zero and the system with one RHP(right half plane) real zero. It has also shown that the effects of the LHP or the RHP zero are very serious when the zero is getting closer to the origin on the complex plane. Based on these analytic results, this paper has presented two sufficient and necessary conditions for 2nd-order linear SISO(single-input/single-output) stable systems to have the nonovershooting and the monotone nondecreasing step response, respectively. The latter condition can be extended to the sufficient conditions for the monotone nondecreasing step response of high-order systems.