Adaptive Feedback Linearization Control Based on Stator Fluxes Model for Induction Motors

  • Jeon, Seok-Ho (School of Electrical Engineering, Seoul National University) ;
  • Park, Jin-Young (School of Electrical Engineering, Seoul National University)
  • Published : 2002.12.01

Abstract

This paper presents an adaptive feedback linearization control scheme for induction motors using stator fluxes. By using stator flukes as states, overparameterization is prevented and control inputs can be determined straightforwardly unlike in existing schemes. This approach leads to the decrease of the relative degree for the flux modulus and thus yields a simpler control algorithm than the prior results. In this paper. adaptation schemes are suggested to compensate for the variations of stator resistance. rotor resistance and load torque. In particular, the adaptation to the variation of stator resistance with a feedback linearization control is a new trial. In addition, to improve the convergence of rotor resistance estimation, the differences between stator currents and its estimates are used for the parameter adaptation. The simulations show that torque and flux are controlled independently and that the estimates of stator resistance, rotor resistance, and load torque converge to their true values. Actual experiments on a 3.7㎾ induction motor verify the effectiveness of the proposed method.

Keywords

References

  1. Siemens-Rev. v.39 The principle of field orientation applied to the new transvector closed-loop control system for rotating field machines F. Blaschke
  2. Electrical Machines and Drives Peter Vas
  3. PESC '88 A stator flux oriented induction machine drive Xingyi Xu;Rik De Doncker;Donald W. Novotny
  4. IEEE Trans. Energy Conversion v.5 no.1 Induction machine field orientation along airgap and stator flux W. L. Erdman;R. G. Hoft https://doi.org/10.1109/60.50822
  5. IEEE Trans. Ind. Applicat. v.27 no.4 Implementation of dierect stator flux orientation control on a versatile dsp based system Xingyi Xu;Donald W. Novotny https://doi.org/10.1109/28.85481
  6. IEEE Tran. Power Electronics v.13 no.1 Stator resistance tuning in a stator-flux field-oriented drive using an instantaneous hybrid flux estimator T. G. Habetler;F. Profumo;G. Griva;M. Pastorelli;Alberto Bettini https://doi.org/10.1109/63.654966
  7. Proc. IFAC Nonlin. Contr. Svstems Design Sympos. Nonlinear feedback and control strategy of the induction motor Z. Krzeminski
  8. IEEE Trans. Automat. Contr. v.34 no.12 Design of exact nonlinear controller for induction motors A. De Luca;G. Ulvi https://doi.org/10.1109/9.40783
  9. Int. J. Contr. v.51 Control of induction motors via feedback lineariation with input-output decoupling Dong-Il Kim;In-Joong Ha;Myoung-Sam Ko https://doi.org/10.1080/00207179008934102
  10. IEEE Trans. Automat. Contr. v.38 no.2 Adaptive input-output linearizing control of induction motors R. Marino;S. Peresada;P. Valigi https://doi.org/10.1109/9.250510
  11. IEEE Trans. Contr. Syst. Technol. v.2 no.4 Applied nonlinear control of an induction motor using digital signal processing Th. Von Raumer;J. M. Dion;L. Dugard;J. L. Thomas https://doi.org/10.1109/87.338653
  12. IEEE Trans. Contr Syst. Technol. v.4 no.4 output feedback control of current-fed induction motors with unknown rotor resistance R. Marino;S. Peresada;P. Tomei https://doi.org/10.1109/87.508882
  13. Int. J. Adaptive Contr. Signal Proc. v.10 Adaptive observer-based control of induction motors with unknown rotor resistance R. Marino;S. Peresada;P. Tomei https://doi.org/10.1002/(SICI)1099-1115(199607)10:4/5<345::AID-ACS367>3.0.CO;2-8
  14. IEEE Trans. Automat. Contr. v.43 no.3 A new approach to dynamic feedback linearization control of an induction motor John Chiasson https://doi.org/10.1109/9.661597
  15. IEEE Trans. Automat. Contr. v.44 no.5 Global adaptive output feedback control of induction motors with uncertain rotor resistance R. Marino;S. Peresada;P. Tomei https://doi.org/10.1109/9.763212
  16. Automatica v.32 no.3 On speed control of induction motors R. Ortega;P. Nicklasson;G. Espinosa https://doi.org/10.1016/0005-1098(95)00171-9
  17. IEEE Trans. Automat. Contr. v.40 no.1 An output feedback globally stable controller for induction motors G. Espinosa-Perez;R. Ortega https://doi.org/10.1109/9.362883
  18. IEEE Trans. Cantr. Syst. Technol. v.5 no.3 Theoretical and experimental comparison of two nonlinear controller for current-fed induction motors Ki-Chul Kim;Romeo Ortega;Jean-Paul Vilaino https://doi.org/10.1109/87.572130
  19. American Control Conf. Nonlinear flux-observer-based control of induction motor I. Kanellakopoulos;P. T. Krein;F. Disilvestro
  20. Nonlinear Control Design-Geometric, Adaptive and Robust R. Marino;P. Tomei
  21. IEEE Trans. Industrial Electronics v.35 Observers for flux estimation in induction machines G. C. Verghese;S. R. Sanders https://doi.org/10.1109/41.3067