On the Confidence Region of Vector-valued Process Capability Indices $C_p$& $C_pk$

2차원 벡터 공정능력지수 $C_p$$C_pk$의 근사 신뢰영역

  • Published : 2002.12.01

Abstract

In this paper we study two vector-valued process capability indices $C_{p}$=($C_{px}$, $C_{py}$ ) and $C_{pk}$=( $C_{pkx}$, $C_{pky}$) considering process capability indices $C_{p}$ and $C_{pk}$. First, we derive two asymptotic distributions of plug-in estimators (equation omitted) and (equation omitted) under. some proper. conditions. Second, we examine the performance of asymptotic confidence regions of our process capability indices $C_{p}$=( $C_{px}$ , $C_{py}$ ) and $C_{pk}$=( $C_{pkx}$, $C_{pky}$) under BN($\mu$$_{x}$, $\mu$$_{y}$, $\sigma$$^2$$_{x}$, $\sigma$$^2$$_{y}$,$\rho$)$\rho$)EX>)EX>)EX>)

Keywords

References

  1. Alt, F.B. and N.D.Smith(1988). MUltivariate Process Control, in P.R. Krishnaiah and C.R.Rao, Editors, Handbook of Statistics, Volume 7, North-Holland, Amsterdam, pp. 333-351 https://doi.org/10.1016/S0169-7161(88)07019-1
  2. Beran,R.J.(1984). Bootstrap Methods in Statistics. Jahresberichtr der Deutschen Mathematiker Vereiningung, 86, pp. 14 -30
  3. Chan.L.K., Xiong.Z. and Zhang,D.(1990) On the Asymptotic Distributions of Some Process Capability Indices. Communications in Statistics : Theory and Methods, 19(1), pp. 11-18 https://doi.org/10.1080/03610929008830183
  4. Cho,J.J., Han,J.H. and Jo,S.H.(1997). Bootstrapping Unified Process Capability Index, Journal of the Korean Statistical Society, 26(4), pp 543-554
  5. Cho,J.J. Kim,J.S. and Park,B.S.(1999). Better Nonparamethc Bootstrap Confidence Interval for Process Capability Index Cpk, Korean Journal of Applied Statistics, 12(1), pp. 45-65
  6. Cho.J.J. and Park,B.S.(2002). Unpublished paper
  7. Diciccio.T.J. and Tibshirani,R.(1987). Bootstrap Confidence Intervals and Bootstrap Approximations, Journal of the American Statistical Association, 82, pp. 163-170 https://doi.org/10.2307/2289143
  8. Efron,B.(1979). Bootstrap Methods : Another look at the jackknife, Annals of Statisttcs, 7, pp. 1-26 https://doi.org/10.1214/aos/1176344552
  9. Franklin,L.A. and Wasserman,G.S.(1992) Bootstrap Lower Confidence Interval Limits for Capability Indices, Journal of QuaIity TechnoIogy, 24, pp. 196-210
  10. Greenwich,M. and Jahr-Schaffrath,B.L. (1995). A Process Incapability Index, International Journal of Quality & Reliability Management, 12(4), pp. 58-71 https://doi.org/10.1108/02656719510087328
  11. Hall,P.(1988). Theoretical Comparison of Bootstrap Confidence Intervals. Annals of Statistics, 16, pp. 927-953 https://doi.org/10.1214/aos/1176350933
  12. Han,J.H., Cho,J.J. and Lim,C.S.(2000). Bootstrap Confidence Limits for Wright's $ C_s$, Commnications in Stat istics : Theory and Methods, 29(3), pp. 485-505 https://doi.org/10.1080/03610920008832498
  13. Hubele.N.F., Shahriari,H. and Cheng, C.S.(1991). A bivahate process Capability vector, in Statistical Process Control in Manufactuhng (J.B. Keats and D.C. Montgomery, eds.) M. Dek ker : New York, pp. 299-310
  14. Kocherlakota.S. and Kocherlakota,K.(1991). Process capability indices : Bivariate Normal distribution, COmmunication in Statistics : Theory and Methods, 20, pp. 2529-2547 https://doi.org/10.1080/03610929108830648
  15. Kotz.S. and Johnson,N.L.(1993). Process Capability Indices, 1st ed., Chapman & Hall
  16. Pearn,W.L., Kotz.S. and Johnson,N.L (1992). Distributional and Inferential Properties of Process Capabiblity Indices, journal of Quality Technology, 24, pp. 216-231 https://doi.org/10.1080/00224065.1992.11979403
  17. Wierda,S.J.(1992). A multivariate Process capability index, Proceedings 9th International Conference; Israel Society of Quatity Assurance, Jerusalem, Israel, pp. 517-522