Polyamine Stimulation of arcA Expression in Escherichia coli

  • Rhee, Mun-Su (Department of Biological Science, Sung Kyun Kwan University) ;
  • Kim, Young-Sik (Department of Biological Science, Sung Kyun Kwan University) ;
  • Park, Seon-Young (Department of Biological Science, Sung Kyun Kwan University) ;
  • Park, Myung-Hun (Department of Biological Science, Sung Kyun Kwan University) ;
  • Kim, Bo-Min (Department of Biological Science, Sung Kyun Kwan University) ;
  • Kang, Seong-Uk (Department of Biological Science, Sung Kyun Kwan University) ;
  • Lee, Kui-Joo (Department of Biological Science, Sung Kyun Kwan University) ;
  • Lee, Jong-Ho (Department of Biological Science, Sung Kyun Kwan University)
  • Published : 2002.12.01

Abstract

The effects of two natural polyamines (putrescine and spermidine) on the synthesis of ArcA, a response regulator of the Arc two-component signal transduction system, were studied using an E. coli mutant deficient in polyamine biosynthesis. Endogenous polyamine deficiency of the mutant resulted in marked reduction in the ArcA level determined by Western blot analysis. Putrescine supplement to the growth medium effectively increased the ArcA level of the mutant in a concentration-dependent manner. Spermidine also stimulated the ArcA level in the mutant to a greater degree than putrescine. Expression of arcA'::lacZ operon fusion in the mutant was stimulated 6-fold and 10-fold by putrescine and spermidine at a 1mM concentration, respectively, indicating that the stimulatory effect of the polyamines on ArcA synthesis is due to transcriptional induction, and that spermidine is a more potent arcA inducer than putrescine. The polyamine-dependent arcA'::lacZ induction was growth-phase-dependent and independent of either arcA or fnr which are two regulators involved in anaerobic stimulation of the Arch level. These results suggested that putrescine and spermidine polyamines may be potential intracellular signal molecules in the control of arcA expression, and thereby may play an important role in cellular metabolism.

Keywords

References

  1. Short protocols in Molecular Biology. Ausubel,F.M.;R.Brent;R.E.Kingston;D.D.Moore;J.G.Seidman;J.A.Smith;K.Struhl.
  2. Mol. Microbiol. v.45 Gene expression profiling of Escherichia coli growth transitions: an expanded stringen response midel. Chang,D.E.;D.J.Smalley;T.Conway.
  3. Mol.Microbiol. v.11 Anaerobic activation of arcAtranscription of Escjerichia coli: roles of Fnr and ArcA. Compan,I;D.Touati.
  4. Nature v.272 Polyamine deficiency reduces the rate of DNA replication fork movement in Escherichia coli. Geiger,L.E.;D.R.Morris
  5. Science v.292 Quinones as the redox signal for the Arc two-component systam of bacteria. Georgellis.D.;O.Kwon;E.C.C.Lin.
  6. J.Bacteriol. v.179 In vitro phosphorylation study of the Arc two component signal transduction system of Escherichia coli. Georgellis,D.;A.S.Lynch;E.C.C.Lin.
  7. Proc. Natl.Acad.Sci.USA. v.80 Indirect stimulation of genetic recombination. Golub,E.I.;K.B.Low.
  8. Two-component signal transduction. Hoch,J.A.;T.J.Shihavy.
  9. Kidney Int. v.62 Effects of high glucose and TGF-betal on the expression of collagen IV and vascular endothelial growth fator in mouse podocytes. Iglesias-De;La.Cruz MC.;F.N.Ziyadeh;M.Isono;M.Kouahou;D.C.Han;R.Kalluri;P.Mundel;S.Chen.
  10. J. Bacteriol. v.172 Requirnment for terminal cytochtomes in generation of the aerobic signal for the arc regulatory system in Escherichia coli:study utilizing deletions and lac fusions of cyo and cyd. Iuchi,S.;V.Chepuri;H.A.Fu;R.B.Gennis;E.C.C.Lin.
  11. Proc. Natl.Acad.Sci.USA v.85 arcA(dye), a global regulatory gene in Escherichia coli mediating repression of en aerobic pathways. Iuchi,S.;E.C.C.Lin.
  12. J.Bacteriol. v.174 Purification and phosphorylation of the Are regulatory components of Escherichia coli. Iuchi,S.;E.C.C.Lin.
  13. Mol. Microbiol. v.9 Adapttion of Escherichia coli to redox environments by gene expression. Iuchi,S.;E.C.C.Lin.
  14. J.Biochem v.120 Celluiar and molecular physiology of Escherichia coli in the adaptation to aerobic environments. Iuchi,S.;L.Weiner.
  15. J.Biol.Chem. v.276 Multimerixation of phosphorylated and non-phosphorylated ArcA is necessary for the response regulator function fo the Arc two-component signal transdution system. Jeon,Y;Y.S.Lee;J.S.Han;J.B.Kim;D.S.Hwang.
  16. J.Bacteriol. v.173 Polyamines as constituents of the outer membranes of Escherichia coli and Salmonella typhimurium. Koski,P;M.Vaara.
  17. J. Biol. Chem. v.193 Protein measurement with tne Folin phenol reagent. Lowry,O.H.;N.J.Rosebrough;A.L.Farr;R.J.Randall.
  18. J. Bacteriol. v.178 Transeriptional control mediated by ArcA two-componment response regylator protein of Escherichia coli:Characterization of DNA binding at target promotors. Lynch,A.S.;E.C.C.Lim.
  19. Experiments in molecular genetics. Miller,J.
  20. Proc. Natl.Acad.Sci.USA. v.84 Biosynthesis of polyamines in ornithine decarboxylase, arginine decarboxylase, and agmatine ureohydrolase deletion mutants of Escherichia coli K-12. Panagiotidis,C.A.;S.Blackburn;K.B.Low;E.S.Canellakis.
  21. Autoregulation of the acrA gene Escherichia coli. 92nd American Society for Microbioligy Meeting H-145. Park,S.J.;P.A.Cotter;R.P.Gunsalus.
  22. J.Bactriol v.17 The Cpx envelope stress response is controlled by amplification and feedback inhibition. Raivio,T.L.;D.L.Popkin;T.J.Silhavy.
  23. 101st American Society for Microbiology Meeting H-80 Effect of putrescine on induction of Escherichia coli paiAB is mediated through ArcA. Rhee,M.S.;S.U.Kang;J.H.Lee.
  24. Curr. Opin.Micobiol. v.2 The aerobic/anaerobic interface. Sawers,G.
  25. J.Bacteriol. v.180 Identification of conserved, RpoS-dependent stationary-phase genes of Escherichia coli. Schellhorn,H.E.;J.P.Audia;L.I.C.Wei;L.Chang.
  26. Nature v.175 Putrescine as an essential growth gactor for a mutant of Aspergillus nidulans. Sneath,P.H.
  27. Gene v.53 Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Simon,R.V.;F.Houman;N.Kleckner.
  28. Microbiol.Rev. v.49 Polyamines in microorganisms. Tabor,C.W.;H.Tabor.
  29. Proc. Natl. Acad. Sci USA v.83 Spermidine synthase of Escherichia coli: localization of the speE gene. Tabor,C.W.;H.Tabor;Q.W.Xie
  30. J. Biol. Chem v.262 The speE speD operon of Escherichia coli. Formantion and processing of a proenzyme form of Sadenosylmethionine decarboxylase. Tabor,C.W.;H.Tabor.
  31. Ann.Rev.Biochem v.45 1,4-Diaminobutane(Putrescine), spermidine, and spermine. Tabor,H.;C.W.Tabor.
  32. Adv.Polyamine Rev. v.4 Polyamine biosynthesis and function in Escherichia coli. Tabor,H.;C.W.Tabor.
  33. Annu. Rev. Biochem. v.53 Polyamines Tabor,H.;C.W.Tabor.
  34. Mol. Microbiol. v.9 Iron and oxygen regulation of Escherichia coli MnSOD expression: competition between the global regulators Fur and ArcA for binding to DNA. Tardat,B.;D.Touati.
  35. Arch Microbiol. v.147 On the role of cyclic AMP and the Fnr protein in Escherichia coli growing anaerobically. Unden,G.;A.Duchene.
  36. J. Biol. Chem. v.276 Polyamines enhancement fo the synthesis fo adenylate cylase at the translational level and the consequential stimulation of the synthesis fo the RNA polymerase σ28 subunit. Yoshida,M.;K.Kashiwagi,K.G.Kawai;A.Ishihama;K.Igarashi.
  37. J.Bacteriol. v.171 Spermidine biosynthesis in Escherichia coli: promoter and termination regions of the speEDoperon. Xie,Q.W.;C.W.Tabor;H.Tabor.