Pressed PBG Ring Structure with a Wide Stopband

넓은 저지대역을 가지는 압축된 PBG 링 구조

  • Published : 2002.12.01

Abstract

In this paper, we have studied the dependence of insertion loss of the pressed microstrip PBG ring consisting of coupled two microstrip lines. When the distance decreases, two or three attenuation poles are created by the coupling between the lines. Thus the pressed PBG ring exhibits a wide stop band and sharp cutoff characteristics.

본 논문에서는 두 마이크로스트립 라인으로 이루어진 압축된 마이크로스트립 PBG 링 구조에서 두 마이크로스트립 라인간의 간격변화에 따른 삽입손실 특성을 연구하였다. 두 라인이 가까워짐에 따라 라인간의 커플링으로 인하여 두 개의 감쇄폴이 생겨 넓은 저지대역을 가지며 갭 간격이 매우 가까워지면 2개의 감쇄폴이 3개로 늘어나 저지대역은 매우 넓어지고 cutoff특성 또한 향상된다.

Keywords

References

  1. Photonic Crystals J. D. Joannopoulos;R. D. Meade;J. N. Winn
  2. IEEE Trans. Microwave Theory Tech. v.47 no.11 https://doi.org/10.1109/22.798001
  3. Phys. Rev. E v.59 no.4 Essential parameter in the formation of photonic bandgaps C.-S. Kee;J.-E. Kim;H. Y. Park;S. J. Kim;H. C. Hong;Y. S. Kwon;N. H. Myung;S. Y. Shin;H. Lim https://doi.org/10.1103/PhysRevE.59.4695
  4. IEEE Trans. Microwave Theory Tech. v.47 no.11 Roles of wave impedance and refractive index in photonic crystals with magnetic and dielectric properties C.-S. Kee;J.-E. Kim;H. Y. Park;H. Lim https://doi.org/10.1109/22.798012
  5. IEEE MTT-S Int. Microwave Symp. Dig. MM-wave tapered slot antenna on micromachined photonic bandgap dielectrics T. J. Ellis;G. M. Rebeiz
  6. IEEE Trans. Antennas Propagat. v.47 no.12 Patch antennas on externally perforated high dielectric constant substrates J. S. Colburn;Y. Rahmat-Samii https://doi.org/10.1109/8.817654
  7. IEEE MTT-S Int. Microwave Symp. Dig. Broadband power amplifier integrated with slot antenna and novel harmonic tuning structure V. Radisic;Y. Qian;T. Itoh
  8. IEEE Trans. Microwave Guided Wave Lett. v.8 no.2 Novel 2-D photonic bandgap structure for microstrip lines V. Radisic;Y. Qian;R. Coccioli;T. Itoh https://doi.org/10.1109/75.658644
  9. Appl. Phys. Lett. v.76 no.16 Duplexer using microwave photonic band gap structure S.-S. Oh;C.-S. Kee;J.-E. Kim;H. Y. Park;T. I. Kim;I. Park;H. Lim https://doi.org/10.1063/1.126326
  10. IEEE Trans. Microwave Theory Tech. v.49 A design of the low-pass filter using the novel microstrip defected ground structure D. Ahn;J. S. Park;C. S. Kim;J. Kim;Y. Qian;T. Itoh https://doi.org/10.1109/22.899965
  11. IEEE Trans. Microwave Theory Tech. v.47 no.11 High-impedance electromagnetic surfaces with a forbidden frequency band D. Sievenpiper;L. Zhang;R. F. J. Broas;N. G. Alexopolous;E. Yablonovitch https://doi.org/10.1109/22.798001
  12. Appl. Phys. Lett. v.80 Photonic band gap formation by microstrip ring: A way to reduce the size of microstrip photonic band gap structure C.-S. Kee;M. Y. Jang;I. Park;H. Lim;J.-E. Kim;H. Y. Park;J. I. Lee https://doi.org/10.1063/1.1458069
  13. IEEE Trans. Microwave Theory Tech. v.MTT-26 Capacititance parameters of discontinuities in microstriplines A. Gopinath;C. Gupta
  14. RF and Microwave Coupled-line Circuits R. Mongia;I. Bahl;P. Bhartia
  15. IEEE Trans. Microwave Theory Tech. v.44 Coupling of microstrip square open-loop resonators for cross-coupled planar microwave filters J.-S. Hong;M.J. Lancaster https://doi.org/10.1109/22.543968
  16. IEEE Trans. Microwave Theory Tech. v.MTT-27 Chacteristics of coupled microstripllines R. Garg;I. J. Bahl
  17. Microwave Engineering D. M. Pozar
  18. Electron. Lett. v.37 no.14 Compact lowpass filter using stepped impedance hairpin resonator L.-H. Hsieh;K. Chang https://doi.org/10.1049/el:20010600
  19. IEEE Trans. Microwave Theory Tech. v.MTT-17 Coupled transmission line networks in an inhomogeneous dielectric mdedium G. I. Zysman;A. K. Johnson