DOI QR코드

DOI QR Code

Posterior Consistency of Bayesian Inference of Poisson Processes

  • Kim, Yongdai (Department of Statistics, Ewha Womans University)
  • Published : 2002.12.01

Abstract

Poisson processes are widely used in reliability and survival analysis. In particular, multiple event time data in survival analysis are routinely analyzed by use of Poisson processes. In this paper, we consider large sample properties of nonparametric Bayesian models for Poisson processes. We prove that the posterior distribution of the cumulative intensity function of Poisson processes is consistent under regularity conditions on priors which are Levy processes.

Keywords

References

  1. Statistical models based on counting processes Andersen, P. K.;Borgan, O.;Gill, R. D. Keiding, N.
  2. IEEE Transactions on reliablity v.17 Evaluation of repairable system reliability using the "Bad-as-old" concept Ascher, H. https://doi.org/10.1109/TR.1968.5217523
  3. Technical Report The exponential convergence of posterior probabilities with implications for Bayes estimators of density functions Barron, A.R.
  4. Ann. Statist. v.27 no.5360561 The consystency of posterior distributions in nonparametric problems Barron, A.R.;Schervish, M.J.;Wasserman, L. https://doi.org/10.1214/aos/1018031206
  5. Stochastic Point Process Statistical analysis of nonhomogeneous Poisson processes Brown, M.;P.A.W. Lewis(ed.)
  6. J. Am. Statist. Assoc. v.72 Baayes linear estimators of the intensity function of the nonstationary Poisson process Clevenson, M.I.;Zidek, J.V. https://doi.org/10.2307/2286918
  7. Ann. Statist. v.27 Posterior consistency of Dirichlet mixtures in density estimation Ghoshal, S.;Ghosh, J.K.;Ramamoorthi, R.V. https://doi.org/10.1214/aos/1018031105
  8. Abstract Inference Grenander, U.
  9. Ann. Statist. v.18 Nonparametric Bayes estimators based on beta processes in models for life history data Hjort, N.L. https://doi.org/10.1214/aos/1176347749
  10. Limit Theorems for Stochastic Processes Jacod, J.;Shiryaev, A.N.
  11. Ann. Statist. v.27 Nonparametric Bayesian estimators for counting processes Kim, Y. https://doi.org/10.1214/aos/1018031207
  12. Ann. Statist. v.29 On posterior consistency of survival models Kim, Y.;Lee. J. https://doi.org/10.1214/aos/1009210685
  13. Stochastic Point Process Recent results in the statistical analysis of univariate point processes Lewis, P.A.W.;P.A.W. Lewis(ed.)
  14. Z. Wahrsch verw. Gebiete v.59 Bayesian nonparametric statistical inference for Poisson point peoesses Lo, A. Y. https://doi.org/10.1007/BF00575525
  15. Ann. Statist. v.29 Rates of Convergence of posterior distributions Shen, X.;Wasserman, L.
  16. Random Point Processes Snyder, D.L.