펜실바니아 유역 수질의 공간적 변이에 관한 연구

Spatial Variations of Nutrient Concentrations in Pennsylvania Watersheds

  • 발행 : 2002.12.01

초록

이 연구는 7년 동안의 수문, 기후, 수질자료를 이용하여 펜실바니아 38개 유역 수질의 공간적 변이 패턴을 고찰하였다. 연구기간동안 도시적, 농업적 토지이용이 많은 유역에서 농도의 변이가 심하게 나타났다. 질소의 농도는 농업적 토지이용과. 인의 농도는 도시적 토지이용과 상관관계가 높게 나타났다. 주성분분석을 통해 이들의 농도 변이를 설명하는 주요 성분 셋이 - 토지 지형관련, 기후관련, 규모 - 도출되었다. 부분 여분 분석을 통해 기후, 토지, 지형의 복합적인 영향이 질소 농도 변이의 28.1%를 설명하고 있으며, 순수한 토지 변수의 영향이 인 농도의 41.8 o/o를 설명하고 있음을 알 수 있었다. 주 전체적인 차원에서 농도변이의 뚜렷한 지리적 패턴-북서부지역의 낮은 농도와 남동부지역의 높은 농도-이 나타나고 있으며, 이는 지역적 규모에서 수문, 기후, 토지이용, 지형 등 여러 가지 환경변수의 복합적인 상호관련성을 반영하고 있다.

This paper investigated the spatial variations of nitrogen (N) and phosphorus (P) concentrations for 38 watersheds in Pennsylvania using 7 years of hydroclimatic and water quality data. Watersheds with higher percentage of urban and agricultural land uses exhibited larger variations of nutrient concentrations than forested watersheds. N and P concentrations were strongly associated with agricultural and urban land uses, respectively. The principle component analysis identified three components - land use and topography related, hydroclimate related factors, and size. Results of partial redundancy analysis showed the joint effect of climate, land cover, and topographic variables for explaining 28.1% of the variance of nitrogen concentrations and a pure effect of land cover for explaining 41.8% of total variance of P concentrations. The geographical pattern of statewide nutrient concentrations demonstrated a strong spatial gradient; low concentration in northwestern PA and high concentrations in southeastern PA. This pattern is associated with combined effects of hydroclimate, land use, topography, and water quality at the regional scale.

키워드

참고문헌

  1. Anderson, M. J., &Gribble, N. A, 1998, Partitioning the variation among spatial, temporal, and environmental components in a multivariate data set. Australian Journal of Ecology, 23(2), 158-167
  2. Andersson, R., 1986, Forluster av kuave och fosfor fran akermark i Sverige. Unpublished Dissertation, Swedish University of Agricultural Sciences, Uppsala
  3. Arheimer, B., & Liden, R, 2000, Nitrogen and phosphorus concentrations from agricultural catchments- influenceof spatial and temporal variables. Journal of Hydrology, 227,140-159 https://doi.org/10.1016/S0022-1694(99)00177-8
  4. Aspinall,R, & Pearson,D.,2000, Integrated geographical assessment of environmental condition in water catchments: Linking landscape ecology, environmental modelling and GIS. Journal of Environmental Management, 59,299-319
  5. Bis, B., Zdanowicz,A, & Zalewski,M.,2000, Effects of catchment properties on hydrochemistry, habitat complexityand invertebrate communi-ty structure in a lowland river. Hydrobiologia, 422, 369-387
  6. Borcard, D., Legendre, P., & Drapeau, P., 1992, Partialling out the Spatial Component of Ecological Variation. Ecology, 73,1045-1055
  7. Davie, T.2002, Fundamentals ofHydrology, Routledge, London and New York
  8. Earthlnfo Inc. 1998, EPA STORET 1998 Region 3:1, Earth Info Inc., Boulder,CO
  9. Ekholm, P., Kallio, K., Salo, S. Pietilainen,O-P., Rekolainen, S., Lanie,Y, & Joukola, M., 2000, Relationship between catchment characteristics and nutrient concentrations in an agricultural river system. Water Research, 34, 3709-3716
  10. Gibbs, R. J., 1970, Mechanism controlling world water chemistry. Science, 170, 1088-1090
  11. Gburek, W. J. & Sharpley, A. N., 1998, Hydrologic controls on phosphorus loss from upland agricultural watersheds. Journal of Environmental Qnality, 27,267-277
  12. Hainly, R. A and Loper, C. A 1997, Water Quality Assessment of the Lower Susquehanna River Basin, Pennsylvania and Maryland - Sources, Characteristics, Analysis, and Limitations of Nutrient and Suspended-Sediment Data, 1975-90( U.S. Geological Survey Water-Resources Investigations Report 97-4209)
  13. Heathwaite, A. L., & Dils, R. M., 2000, Characterising phosphorus loss in surface and subsurface hydrological pathways. The Science of the Total Environment, 251/252, 523-538
  14. Hudak, P. F.,2000, Regional trends in nitrate content of Texas groundwater. Journal of Hydrology, 228,37-47
  15. Johnes, P. J., 1999, Understanding lake and catchment history as a tool for integrated lake management. Hydrobiologia, 396, 41-60.
  16. Jongman, R. H. G., ter Braak, C. J. F., and van Tongeren, O. F.R(eds), 1997, Data Analysis in Community and Landscape Ecology, New York: Cambridge University Press
  17. Liu, Q. H., 1997, Variation partitioning by partial redundancy analysis(RDA). Environmetrics, 8(2), 75-85
  18. Loveland, T. R, & Shaw, D. M., 1996, Multiresolution land characterization: Building collaborative partnerships. Paper presented at the Gap Analysis: A Landscape Approach to Biodiversity Planning,Charlotte,North Carolina
  19. Meybeck, M., & Helmer, R, 1989, The quality of rivers:from pristine stage to globalpollution. Paleogeography, Paleoclimatology, and Paleoecology, 75,283-309
  20. Miller, C. V. Denis, J. M., Ator, S. W., & Brakebill, J. W., 1997, Nutrients in streams during baseflow in selected environmental settings of the Potomac River Basin, Journal of American Water Resources Association, 33, 1155-117l
  21. Osborne, L. L.,& Wiley, M. J., 1988, Empirical relationships between land use / cover and stream water quality in an agricultural watershed. Journal of Environmental Management, 26,9-27
  22. Pardo, I., 1994, Comparative water quality characterization by PCA of an unperturbed and a polluted stream.Arch Hydrobiol, 132,95-114
  23. Perona, E.,Bonilla, I., & P.,M.,1999, Spatialand temporal changes in water quality in a Spanish river. TheScience ofthe Total Environment, 241, 75-90
  24. Peters, N. E., & Meybeck, M., 2000, Water quality degradation effects on freshwater availability: Impacts to human activities. Water International, 25(2), 185-193
  25. Pionke, H. B., Gburek, W. J., Sharpley, A. N., & Zollweg, J. A, 1997, Hydrologic and chemical controls on phosphorus loss from soil to water In H. Tunney(ed.), Phosphorus Loss from Soil to Water. Cambridge, England, CAB Int. Press
  26. Prairie, Y. T., & Kalff,J., 1986, Effect of catchment size on phosphorus export. Water Research Bulletin, 22(3),465-470
  27. ter Braak, C. J. F., & Smilauer, P., 1998,CANOCO Reference Manual and User's Guide to Canoco for Windows. Software for Canonical Community Ordination(version 4). Ithaca NY: Microcomputer Power
  28. United States Environmental Protection Agency, 2002, Drinking water regulations and health advisories, Office of Water, available at http://www.epa.gov/waterscience/drinking/standards/summary.html accessed on Nov 28th,2002
  29. Vega, M., Pardo, R, Barrado, E., & Deban, L., 1998, Assessmentof seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research, 32(12), 3581-3592
  30. Vidal, M., Melgar, J., Lopez, A.E.,& Santoalla, M.C., 2000, Spatial and temporal hydrochemical changes in groundwater under the contaminating effects of fertilizers and wastewater. Journal of Environmental Management, 60,215-225
  31. Vogelmann, J. E., Sohl, T., & Howard, S. M., 1998, Regionalcharacterizationof land cover using multiple sources of data. Photogrammetric Engineering and Remote Sensing, 64,45-57
  32. Walling, D. E., & Webb, B. W., 1986, Solutes in river systems. In S. T. Trudgill(Ed.), Solute Processes(pp. 251-327). Chichester: John Wiley& Sons
  33. Waschbusch, R J., Selbig, W. R., & Bannerman, R.T., 1999, Sources of Phosphorus in Stormwater and Street Dirtfrom Two Urban Residential Basins in Madison, Wisconsin, 1994-95, U.S. Geological Survey
  34. Welsch, D. L., Kroll, C. N., McDonnell, J. J., Burns, D. A, 2001, Topographic controls on the chemistry of subsurface stormflow. Hydrological Processes, 15,1925-1938
  35. Weld,J.,Sharpley, A. N., Beegle, D. B., & Gburek,W. J., 2001, Identifying critical sources of phosphorus export from agricultural watersheds. Nutrient Cycling inAgroecosystems, 59(1), 29-38
  36. Yarnal, B., 1995, Climate of Pennsylvania. In E. W. Miller(Ed.), A Geography of Pennsylvania(pp. 44-55). University Park: Pennsylvania State University Press