Effects of Temperature and Nematode Concentration on Pathogenicity and Reproduction of Entomopathogenic Nematode, Steinernema carpocapsae Pocheon Strain (Nematoda: Steinernematidae)

온도 및 농도가 곤충병원성 선충, Steinernema carpocapsae 포천 계통 (Nematoda: Steinernematidae)의 병원성과 증식에 미치는 영향

  • Published : 2002.12.01

Abstract

Ecological studies on entomopathogenic nematodes are required to increase control efficacy against target insect pests and to obtain basic information for mass production. Thus, effect of temperature and nematode concentration on infectivity and reproduction of Steinernema carpocapsae Pocheon and that of exposure time and soil depth on infectivity were examined using Galleria mellonella larvae. Infectivity and reproduction were examined at five temperatures, 13, 18, 24, 30 and 35$^{\circ}C$ with seven concentrations, 0, 5, 10, 20, 40, 80 and 160 infective juveniles (IJs)/larva. Temperature and nematode concentration influenced infectivity and reproduction of S. carpocapsae Pocheon. Although G. mellonella larvae were killed by S. carpocapsae Pocheon at all given temperatures and nematode concentrations, mortality was higher at 24$^{\circ}C$ than other temperatures. Lethal time of G. mellonella by S. carpocapsae Pocheon was shorter with increasing temperature and nematode concentrations. S. carpocapsae Pocheon was not established in G. mellonella at 13 and $35^{\circ}C$. Time for the first emergence from G. mellonella cadaver was longer $18^{\circ}C$ (about 20 days) than 24 and $30^{\circ}C$ (about 5 days). The highest number of progenies was obtained at $24^{\circ}C$ with 80IJs/1arva, i.e., $18.8$\times$10^4$IJs were produced from a larva. In the exposure time assay, G. mellonella death was recorded in 10 minutes when 300 IJs were inoculated per larva. When S. carpocapsae Pocheon was inoculated at the rate of $10^{9}$ IJs/ha to G. mellonella at the depth of 0, 2, 5 and 10 cm of sand columns, 100% mortality and similar sex ratio were observed but number of established IJs in cadaver was decreased with deepening the soil depth. The results indicated that optimum temperature for infectivity and reproduction of S. carpocapsae Pocheon was $24^{\circ}C$ In addition, S. carpocapsae Pocheon was effective to target insects within 5 cm from the soil surface.

곤충병원성 선충의 대상 해충에 대한 방제효과를 증대시키고 대량생산을 위한 기초자료를 얻기 위하여 온도와 접종농도가 Steinernema carpocapsae Pocheon계통의 꿀벌부채명나방(Calleriamellonella)유충의 감염력과 증식에 미치는 영향 및 노출시간과 토양깊이가 감염력에 미치는 영향을 조사하였다. 실험은 13, 18, 24, 30, $35^{\circ}C$의 온도조건과 꿀벌부채명나방 유충 한 마리당 0, 5, 10, 20, 40, 80, 160마리의 접종농도에서 수행하였다 온도와 접종농도는 모두 S. carpocapsae Pocheon 계통의 꿀벌부채명나방에 대한 감염성과 증식에 영향을 미쳤는데 $24^{\circ}C$에서 가장 좋았고, 온도와 접종농도가 증가할수록 치사시간은 단축되는 경향이었다 그리고 S. carpocapsae Pocheon계통은 모든 실험온도에서 꿀벌부채명나방 유충을 치사시켰지만 $13^{\circ}C$$35^{\circ}C$에서 발육은 하지 못하였다. S. carpocapsae Pocheon계통이 꿀벌부채명나방 유충 체내에서 증식되어 최초로 탈출하는데 소요되는 기간은 $18^{\circ}C$에서 20일 내외로 가장 길었고, $24^{\circ}C$$30^{\circ}C$에서는 5일 내외로 짧았다. S. carpocapsae Pocheon계통의 증식수는$ 24^{\circ}C$ 80마리 농도에서 꿀벌부채명나방 유충 1마리 당 18.8$\times$$10^4$마리로 가장 많았다. S. carpocapsae Pocheon 계통은 꿀벌부채명나방 유충에 300마리 농도로 접종하였을 때 10분만에도 침입하였다. 한편 S. carpocapsae Pocheon계통은 모래층의 깊이(0, 2, 5, l0 cm)에 상관없이 $10^{9}$마리/ha농도로 처리하였을 때 꿀벌부채명나방 유충에 대하여 100%의 치사율을 보였고, 토양 깊이별 선충의 성비도 차이가 없었으나 정착한 선충의 수는 깊이가 깊을수록 적었다. 따라서 S. carpocapsae Pocheon계통을 이용한 해충방제와 증식은 $24^{\circ}C$내외가 적당할 것으로 보이며 토양에서의 처리는 5cm이내에 서식하는 해충을 대상으로 하는 것이 바람직 할 것으로 보인다.

Keywords

References

  1. Bedding, R.A. and R.J. Akhurst. 1975. A simple technique for the detection of insect parasitic rhabditid nematodes in soil. Nema-tologica21: 109-116
  2. Cho, I.H. 1996. Practice and application of SAS. 665pp. Sungan-dang Pub. Co. Seoul
  3. Choo, H.Y., D.W. Lee, S.M. Lee, T.W. Lee, W.G. Choi, Y.K. Chung and Y.T. Sung. 2000. Turfgrass insect pests and natural enemies in golf courses. Korean J. Appl. Entomol. 39: 171-179
  4. Choo, H.Y., H.K. Kaya and S.P. Stock. 1995. Isolation Of entomo-pathogenic nematodes (Steinemematidae and Heterorhabditi-dae) from Korea. Japanese Journal of Nematology 25: 44-51 https://doi.org/10.3725/jjn1993.25.1_44
  5. Choo. H.Y., H.H. Kim, D.W. Lee and Y.D. Park. 1996. Microbial control of fly maggots with entomopathogenic nematodes and fungus in outhouses of farmhouses. Korean J. Appl. Entomol. 35: 80-84
  6. Choo. H.Y., H.H. Kim, D.W. Lee, S.M. Lee, S.H. Park, Y.M. Choo and J.K. Kim. 2001. Practical utilization of entomopatho-genie nematoges, Steinernema carpocapsae Pochen strain and Heterorhabditis bacteriophora Hamyang strain for control of chestnut insect pests. Korean J. Appl. Entomol. 40: 69-76
  7. Converse, V. and R.W. Miller. 1999. Development of the one-on one quality assessment assay for entomopathogenic nematodes. J. Invertebr. Pathol. 74: 143-148 https://doi.org/10.1006/jipa.1999.4867
  8. Dowds, B.C.A. and A. Peters. 2002. Virulence mechanisms. pp. 79-98. In Entomopathogenic nematology, ed. by R. Gaugler. 388 pp. CABI publishing, Oxon
  9. Dutky, S.R., J.V. Thompson and G.E. Cantwell. 1964. A techni-que for the mass production of the DD-136 nematode. J. Insect Pathol. 6: 417-422
  10. Ferguson, C.S., P.C. Schroeder and E.J. Shields. 1995. Vertical distribution, persistence, and activity of entomopathogenic nematodes (Nematoda: Heterorhabditidae and Steinernemati-dae) in alfalfa snout beetle (Coleoptera: Curculionidae) infected fields. Biological Control. 149-158 https://doi.org/10.1017/CBO9780511661730.015
  11. Forst, S. and D. Clarke. 2002. pp. 57-77. In Entomopathogenic nematology, ed. by R. Gaugler. 388 pp. CABI publishing, Oxon
  12. Fujiie, A., M. Tachibana and Y. Takata. 1995. Effects of tempera-ture on insecticidal activity of an entomopathogenic nematode, Steinernema Kushidai (Nematoda: Steinemematidae), against Anomala cuprea (Coleoptera: Scarabaeidae) larvae. Appl. Entomol. Zool. 30: 23-30 https://doi.org/10.1303/aez.30.23
  13. Georgis, R. and G.O. Poinar. 1983. Vertical migration of Heteror-habditis bacteriopora and H. heliothidis (Nematoda: Heteror-habditidae) in sandy loam soil. Journal of Nematology. 15: 652-654
  14. Glazer, I., E. Kozodoi, G. Hashmi and R. Gaugler. 1996. Bio-logical characteristics of the entomopathogenic nematode Heterorhabditis sp. IS-5: a heat tolerant isolate from Israel. Nematologica 42: 481-492 https://doi.org/10.1163/004525996X00082
  15. Gouge, D.H., K.A. Smith, L.L. Lee and T.J. Henneberry. 2000. Effect of soil depth and moisture on the vertical distribution of Steinernema riobrave (Nematoda: Steinernematidae). Journal of Nematology 32: 223-228
  16. Hazir, S., S.P. Stock, H.K. Kaya, A.M. Koppenhofer and N. Keskin. 2001. Developmental temperature effects on five geo-graphic isolates of the entomopathogenic nematod Steinernema feltiae (Nematoda: Steinernematidae). J. Invertebr. Pathol. 77: 243-250 https://doi.org/10.1006/jipa.2001.5029
  17. Hominick, W.M. 2002. Biogeography. pp. 115-143. In Entomo-pathogenic nematology, ed. by R. Gaugler. 388 pp. CABI Pu-blishing, Oxon
  18. Kaya, H.K. and R. Gaugler. 1993. Entomopathogenic nematods. Ann. Rev. Entomol. 38: 181-206 https://doi.org/10.1146/annurev.en.38.010193.001145
  19. Kim, H.H., H.Y. Choo, C.G. Park, S.M. Lee and Y.M. Choo. 2001a. Biological control of cotton caterpillar, Palpita indica saunder (Lepidoptera: Pyralidae) with entomopathogenic nematodes. Korean J. Appl. Entomol. 40: 245-252
  20. Kim, H.H., H.Y. Choo, H.S. Lee, C.G. Park, D.W. Lee, B.R. Jin and Y.M. Choo. 2001b. Biological control of Lycoriella mali (Diptera: Sciaridae), a pest of oyster mushroom, Pleurotus ostreatus using entomopathogenic nematodes. Korean J. Appl. Entomol. 40: 59-67
  21. Koppenh$\ddot{o}$fer, A.M. and H.K. Kaya. 1999. Ecological Characteri-zation of Steinernema rarum. J. Invertebr. Pathol. 73: 120-128 https://doi.org/10.1006/jipa.1998.4822
  22. Koppenh$\ddot{o}$fer, A.M., S. Ganguly and H.K. Kaya. 2000. Ecological characterization of Steinernema monticolum, a cold-adapted entomopathogenic nematode from Korea. Nematology. 2: 407-416 https://doi.org/10.1163/156854100509268
  23. Khtani, K. 1997. The low development threshold temperature and the thermal constantin insects, mites and nematodes in Japan. Miscellaneous Publications of The Nationallnstitute of Agro-Environmental Sciences 21: 1-72
  24. Kung, S.P., R. Gaugler and H.K. Kaya. 1991. Effects of soil temperature, moisture, and relative humidity on entomopathogenic nematode persistence. J. Invertebr. Pathol. 57: 242-249 https://doi.org/10.1016/0022-2011(91)90123-8
  25. Lee, D.W., H.Y. Choo, H.K. Kaya, S.M. Lee, D.R. Smitly, S.K. Shin and C.G. Park. 2002. Laboratory and field evaluation of Korean entomopathogemc nematode isolates against the Orien-tal beetle, Exomala orientalis (Coleoptera: Scarabaeidae). J. Econ. Entomol. 95. (in press)
  26. Lee, S.M., D.W. Lee, H.Y. Choo, D.W. Kim and J.B. Kim. 1997 Pathogenicity of entomopathogenic nematodes to some agro-forest insect pests. Korean J. Soil Zoology. 2: 76-82
  27. Lewis, E.E. 2002. Behaviour ecology, pp. 205-223. In Entomopa-thogenic nematology, ed. by R. Gaugler. 388 pp. CABI Publi-shine, Oxon
  28. Mason, J.M. and W.M. Homonick. 1995. The effect of tempera ture on infection, development and reproduction of Heterorha-bditis. Joumal of Helminthology 69: 337-345 https://doi.org/10.1017/S0022149X00014929
  29. Molyneux, A.S. 1986. Heterorhabditis spp. and Steinemema spp.: temperature, and aspects of behaviour and infectivity. Experi-mental parasitology 62: 169-180 https://doi.org/10.1016/0014-4894(86)90021-4
  30. NIAST. 2000. Control and diagnosis of vegetable pests. 331 pp. Academy Press. Seoul
  31. Ricci, M., I. Glazer, J.F. Campbell and R. Gaugler. 1996. Com-parison of bioassays to measure virulence of different entomo-pathogenic nematodes. Biocontrol Science and Techology 6: 235-245 https://doi.org/10.1080/09583159650039421
  32. Saunders, J.E. and J.M. Webster. 1999. Temperature effects on Heterorhabditis megidis and Steinernema carpocapsae infecti-vity to Galleria mellonella. Joumal ofnematology 31: 299-30
  33. Schirocki, A.C. and N.G.M. Hague. 1997. The effect of selective culture of Steinemema feltiae at low temperature on establish-ment, pathogenicity, reproduction and size of infective juvenil-es. Nemato1ogica43: 481-490 https://doi.org/10.1163/005125997X00075
  34. Simoes, N., C. Caldas, J.S. Rosa, E. Bonifassi and C. Laumond. 2000. Pathogenicity caused by high virulent and low virulent strains of Steinernama carpocapsae to Gatteria mellonella. J. Invertebr. Pathol.. 75: 47-54 https://doi.org/10.1006/jipa.1999.4899
  35. Westerman, P.R. 1999. Aggregation of entomopathogenic nema-todes, Heterorhabditis spp. and Steinemema spp., among host insects at 9 and 20"C and effects on efficacy. J. Invertebr. Pathol. 73: 206-213 https://doi.org/10.1006/jipa.1998.4801
  36. Woodring, J.L. and H.K. Kaya. 1988. Steinernematidae and heterorhabditid nematodes: A handbook of techniques. Sou-thern Coop. Ser. Bull. 331, Alkansas Agri. Exp. Stn. Fayett-eville, AR. 29 pp
  37. Wright, PJ. 1992. Cool temperature reproduction of Steinerne-matid and heterorhabditid nematodes. J. Invertebr. Pathlo. 60: 148-151 https://doi.org/10.1016/0022-2011(92)90088-L
  38. eh, T. and S.R. Alm. 1992. Effects of entomopathogenic nematode species, rate, soil moisture, and bacteria on control of japanese beetle (Coleoptera: Scarabaeidae) larvae in the labora-tory. J. Econ. Entomol. 85: 2144-2148 https://doi.org/10.1093/jee/85.6.2144