Abstract
The semi-analytic sensitivity analysis using Pade approximation is presented for linear elastic structures. Although the semi-analytic method has several advantages, accuracy of the method prevents it from practical application. One of promising remedies is the use of geometric series for the matrix inversion. Though series expansion of order three has been successfully applied to the calculation of the structural sensitivity in the most range of the design perturbation, it is prone to have a slow convergence for large perturbation. To overcome this shortage, Pade approximation is introduced so that it can broaden the trust region of the perturbation without adding expansion terms. Numerical results show that the confident sensitivity can be obtained with tiny expenses of computation effort.