Applicability of the Korteweg-de Vries Equation for Description of the Statistics of Freak Waves

최극해파통계분석을 위한 Korteweg-de Vries식의 적용성 검토

  • Anna Kokorina (Laboratory of Hydrophysics and Nonlinear Acoustics, Institute of Applied Physics, and Applied Mathematics Department, Nizhny Novgorod State Technical University) ;
  • Efim Pelinovsky (Laboratory of Hydrophysics and Nonlinear Acoustics, Institute of Applied Physics, and Applied Mathematics Department, Nizhny Novgorod State Technical University)
  • Published : 2002.12.01

Abstract

The requirements to the numerical model of wind-generated waves in shallow water are discussed in the framework of the Korteweg-de Vries equation. The weakness of nonlinearity and dispersion required for the Korteweg-de Vries equation applicability is considered for fully developed sea, non-stationary wind waves and swell, including some experimental data. We note for sufficient evaluation of the freak wave statistics it is necessary to consider more than about 10,000 waves in the wave record, and this leads to the limitation of the numerical domain and number of realizations. The numerical modelling of irregular water waves is made to demonstrate the possibility of effective evaluation of the statistical properties of freak waves with heights equal to 2-2.3 significant wave height.

본 논문에서는 Korteweg de Vries(이하 KdV)방정식의 골격내에서 천해의 풍파의 수치모형요구조건에 대한 토의를 수행하였다. KdV식을 실험자료를 포함하는 발달된 해상상태, 비정상적 풍파와 나블상황에 적용시의 비선형성과 분산성의 취약점을 논하였다. 최극해파통계의 충분한 평가를 위해서는 파고기록이 적어도 10.000개 정도의 해파를 다루어야 하는데 이는 숫적으로 다루기 힘들다. 따라서 유의파의 2-2.3배에 상응하는 최극해파의 통계적 특성을 효과적으로 평가할 수 있는 가능성을 제시하는 불규칙해파의 수치적 모형을 제시하였다.

Keywords

References

  1. J. Willey Physical oceanography of coastal waters Bowden, K.F.
  2. Nauka Sea surface irregular waves Bychkov, V.S.;Strekalov, S.S.
  3. Solitons: An introduction Drazin, P.G.;Johnson, R.S.
  4. Proc. $10^th$ Conference ISOPE Freak Waves: rare realizations of a typical population or typical realizations of a rare population Haver, S.;Andersen, O.J.
  5. J. Geophys. Research v.C32 Nonlinear dispersion of surface gravity waves in shallow water Herbers, T.H.C.;Elgar, S.;Sarap, N.A.;Guza, R.T.
  6. Gidrometeoizdat, S. Petersburg. Mathematical modelling of wind-generated waves in spatially heterogeneous ocean Lavrenov, I.V.
  7. New Scientist v.2297 Monsters of the deep Lawton, G.
  8. World Scientific Ocean surface waves: their physics and prediction Massel, S.R.
  9. World Scientific The applied dynamics of ocean surface waves Mei, C.C.
  10. Proc. $10^th$ Conference ISOPE Statistical properties of freak waves observed in the sea of Japan Morf, N.;Yasuda, T.;Nakayama, S.
  11. Phys. Rev. Letters v.71 Behaviour of solitons in random-function solutions of the periodic Korteweg-de Vries equation Osborne, A.R.
  12. Physics Review E v.52 Solitons in the periodic Korteweg-de Vries equation, the Q-function represention, and the analysis of nonlinear, stochastic wave trains Osbome, A.R.
  13. Nonlinear dynamics of tsunami Pelinovsky, E.N.
  14. Rogue Waves 2000 (Bresr, Frace, 2000) Nonlinear wave focusing as a mechanism of the freak wave generation in the ocean Pelinovsky, E.;Kharif, C.;Talipova, T.;Slunyaev, A.;M. Olagnon(Eds);G.A.Athanassoulis(Eds)
  15. J. Geophys. Reseach v.C4 A thirdgeneration wave model for coastal regions Ris, R.C.;Holthuijsen, L.H.;Booij, N.
  16. Water Wave Kinematics Freak wave kinematics Sand, S.E.;Hansen, N.E.O.;Klinting, P.;Gudmestad, O.T.;Sterndorf, M.J.;Torum, O.(Eds);Gudmestad, O.T.(Eds)
  17. Proc. $10^th Conference ISOPE Statistical analysis and inference from the in-situ data of the sea of Japan with reference to abnormal and/or freak waves Tomita, H.;Kawamura, T.
  18. Atmospheric and Oceanic Physics, Izvestija v.18 Kinetic equation and Kolmogorov spectra in weak-turbulent theory of windgenerated waves Zakharov, V.E.;Zaslavsky, M.M.
  19. Physica D v.147 no.1-2 Nonlinear dispersive mechanism of the freakwave formation in shallow water Pelinovsky, E.;Talipova, T.;Kharif, C.
  20. Atmospheric and Oceanic Physics, Izvestija v.34 Three-wave quasikinetic approximation in the problem of the evolution of a spectrum of nonlinear gravity waves at small depths Zaslavsky, M.M.;Polnikov, V.G.