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Abstract [J The requirements to the numerical model of wind-generated waves in shallow water are discussed
in the framework of the Korteweg-de Vries equation. The weakness of nonlinearity and dispersion required for
the Korteweg-de Vries equation applicability is considered for fully developed sea, non-stationary wind waves
and swell, including some experimental data. We note for sufficient evaluation of the freak wave statistics it is
necessary to consider more than about 10,000 waves in the wave record, and this leads to the limitation of the
numerical domain and number of realizations. The numerical modelling of irregular water waves is made to
demonstrate the possibility of effective evaluation of the statistical properties of freak waves with heights equal

to 2—-2.3 significant wave height.
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1. Introduction

It is well known that wind-generated waves in the deep
water are categorized as a Gaussian random process for
which the probability distribution of wave profile obeys the
normal probability law (Massel, 1996). It is assumed that
all the spectral components of the irregular surface are
independent (because nonlinear wave components have
weak correlation). The wave profile of the wind-generated
waves changes very quickly due to the strong dispersion
effect of the water waves. And as a result its spectrum rep-
resents slow varied characteristics of wind-generated waves,
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which is described by the kinetic equation (Massel, 1996;
Zakharov et al., 1982; Lavrenov, 1998). It is obvious that it
is impossible to restore the wave profile within the spectral
approach because we have to know the phases of spectral
components. And this problem is quite important for the
prediction of the abnormal waves (freak or rogue waves)
appearance due to great interest to it (Lawton, 2001).

The dispersion effects become weaker in shallow water,
and the wave profile conserves its individuality for a long
time (comparing to the wave period). The most widespread
examples of the spectral correlation conservation are the
quasi-stationary waves (as cnoidal waves and solitons) and
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wave breaking of the plunging type. The spectral descrip-
tion of shallow water waves is possible and corresponding
kinetic equations have been already obtained (Zaslavsky,
1998). However, its applicability is not fully understood
because of strong nonlinearity compared to the dispersion.
An altemative approach for shallow water dynamics descrip-
tion is related to the different generalizations of shallow
water equations (Mei, 1993) in which the initial perturba-
tion is represented as a deterministic shape wave. The irreg-
ular waves are not very well investigated, and here the
numerical simulations and laboratory models are effective
(Bychkov et al., 1971; Osborne, 1993; Osborne, 1995; Peli-
novsky et al., 2000).

Here we will consider the problem of numerical simula-
tions of irregular waves in shallow water to obtain the data
of freak waves formation probability. In section 2 the
observed data of the freak waves in coastal zone are pre-
sented and the importance of the freak waves prediction is
addressed. In section 3 the estimations of applicability of
the Korteweg - de Vries equation for wind-generated waves
(fully developed sea, non stationary waves and swell) are
considered. An important problem regarding of the require-
ments to the numerical model for wind-generated waves is
discussed in section 4 for the effective abnormal wave pre-
diction.

2. The observed data of freak waves
in coastal zone

In recent years much information about abnormal waves
(freak waves) formation in different areas of the World
Ocean is collected. Large number of observations shows
that freak wave appears and disappears very suddenly; usu-
ally it is one - three waves with high crests and low troughs.
Recently, the statistics of disasters tanker collisions with
freak waves was published: in last 25 years (1968-1994) 22
super-tankers were lost and 525 people were dead (Lawton,
2001). The geography of these disasters is shown in Fig. 1.

Fig. 2. Observed freak wave.
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Fig. 1. The statistics of tanker collisions with freak waves during 1968-1994.
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Table 1. Data of abnormal waves in coastal zone (Sand et al., 1990)

Place h(m) Hy(m) H,.(m) H,.o/H; Year
Gork, Eire 20 5 12.8 2.6 1969
Hanstholm 20 2 6 3 1985
Gorm Field 40 6.8 17.8 2.6 1981
Gorm Field 40 7.8 16.5 2.1 1981
Gorm Field 40 12 24 1984
Gorm Field 40 5 11.3 2.3 1984
Gorm Field 40 5 11 22 1984
Gorm Field 40 48 13.1 2.7 1984

Fig. 2 presents the picture of the real abnormal wave, which
demonstrates its strong nonlinear character.

The same abnormal waves occur in shallow water. Some
observations of big waves were made in Danish shelf of the
North Sea, which are presented in Table 1 (Sand er al.,
1990). Here £ is the water depth, H; is the significant wave
height, and H,... is maximum observed wave height. As it
could be seen, the abnormal waves exceed the significant
wave height more than twice (this criterion is used for the
freak wave definition in ocean engineering now).

The prediction of such waves is considered to be key
point now in oceanography due to its importance in prac-
tice. Some theoretical models of the freak wave phenome-
non are investigated within the Korteweg - de Vries equation
(Pelinovsky et al., 2000; Pelinovsky et al., 2001). Its appli-
cability to description of the freak wave formation in ran-
dom wind-generated waves should be specially analysed
which will be given below.

3. Applicability of the Korteweg - de Vries
equation

The Korteweg - de Vries equation was developed in 1895

2
%’tl+c(l+;—g)g—2+%%=0 6}
and has become the basic equation in the nonlinear theory in
recent years due to its integrability within the inverse-scat-
tering method (Drazin er al., 1993). Here 1 is the sea surface
elevation, & is a water depth assuming being constant, g is
gravitational acceleration, ¢ = (gh)'? is a maximal velocity
of long wave propagation, x is horizontal coordinate and ¢ is
time. Eq. (1) was derived for simple geometry of unbounded
(in horizontal plane) basin of constant depth and two-
dimensional progressive wave with plain fronts. The main

approximations used for derivation Eq. (1) are the weakness
of nonlinearity, characterized by parameter €.

€=a/h @
and weakness of dispersion
u=kh 3)

where g and k are the local wave amplitude and wave num-
ber. The relation between them is defined by the Ursell
parameter
ur=% @
7
values of which could be different: small Ursell parameter
(almost linear dispersive waves) and large Ursell parameter,
which corresponds to the nonlinear long waves. If the Ursell
parameter is equal to 1, it characterizes the balance between
nonlinearity and dispersion, which leads to the steady-state
wave formation (cnoidal waves and solitons). The analytical
expression for solitons shape is

-V
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which is defined by only free parameter - its height, H (in
fact, there is also another parameter corresponding to the
phase or initial soliton location).

All expressions above are well known in the theory of
nonlinear waves. The solitary wave was first observed by
Russell about 150 years ago, and soliton solution Eq. (5)
well describes it. Different experiments were carried out in
laboratory tanks, which verified the applicability of the
Korteweg - de Vries equation for describing regular water
shallow waves. The processes of initial disturbance trans-
formation into solitons, recurrence effects of the periodical
perturbation, wave group propagation and wave breaking
were investigated. But the direct using these results of
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hydromodelling applying to the real processes in the sea is
impossible due to scale effect (the similarity parameter in
tank depth and length, wave amplitude and wave length
should the same) and, as usual, the waves simulated in the
laboratory tank, are too nonlinear and too dispersive.

In more details the applicability of the Korteweg - de
Vries equation was considered in the tsunamis problem
(Pelinovsky, 1982). It turned out that for most of the tsuna-
mis of the seismic nature the Ursell parameter is quite large,
and that is why the dispersion effects are too small and don’t
influence the wave transformation and propagation. For
tsunamis of the volcanic nature, on the contrary, the disper-
sion effects are more important (the nonlinearity influences
only on the first step of the wave formation).

For our purposes it is important to discuss the applicabil-
ity of the Korteweg - de Vries equation to describe random
wind-generated waves. The main problem is that the wind
wave field is more complicated; it is characterized by wind
velocity, fetch length, depth and geometry of the basin. We
will discuss some limiting cases.

3.1 Fully developed sea

As it exists only in open sea in the deep water and far
from the shoreline, the wave filed is characterized by only
parameter - wind velocity, W. Wave field parameters are
(these evaluations are based on the Pierson-Moskowitz
spectrum).

Hszo.zﬁ, TszSP—V (6)
g g

where H; and 7 is the height and period of the significant
wave, and numerical coefficients are obtained from experi-
mental data (Massel, 1996; Bowden, 1983). The conversion
of wave characteristics from deep to shallow water is not
trivial problem. We can consider very roughly that the wave
period will not be changed greatly (nominally within the
asymptotic approach the wave period is not changed if the
wave is sinusoidal), and wave amplitude could increase due
to energy flux conservation. We will assume that the wave
amplitude is constant and wave length decreases adiabati-
cally, following the relation

A, = JghT, ™

Then the parameters of nonlinearity and dispersion depend
on the relation of wind velocity to the long waves velocity

8z0.2(¥)2, u= % 8)

Simultaneous weakness of nonlinearity and dispersion is
contradictory, and if the wave is weakly nonlinear, it is
strong dispersive. Theoretically, due to small coefficient 0.2
in Eq. (8) it is possible to choose the wind velocity, for
instance, equal to 1.5s, W~ 1.5 s, theng ~u? ~ 0.5 and both
of this parameters could be considered to be weak. It is
clear, that all of this estimations follow from spectral mod-
els of fully developed sea and the small difference in
present empirical spectrums will affect on the coefficients
in Eq. (6) and Eq. (8). So, it follows from the primary esti-
mations that the Korteweg - de Vries equation has very lim-
ited applicability for the fully developed sea description.

3.2 Non-stationary wind-waves

The wave parameters are defined by the wind velocity
and the distance from the shore (fetch length). Fetch length
is characterized by dimensionless length F = gX/W2 The
empirical formulas for perturbation characteristics within
the significant wave terms are the following (Bowden, 1983):

H,= o.3§[1 ~(1+0.004F) % )
T,= 8.6%/[1 —(1+0.008F*) (10)

For the large fetch length formulas (9) and (10) agree with
(6) with small difference in coefficients. For the small fetch
length we have.

2
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In this case nonlinearity and dispersion parameters are

2
2 C -2/3
=4—F (12)
Wb

In general, the weakness of both of the parameters is

2
e=0.02% F2,
C

arbitrary for wind velocities and fetch lengths. Nevertheless
due to different range of the fetch in Eq. (12) there is
parameter space, where € and i are less then unity (the
space between two lines in Fig. 3). So, the domain of appli-
cability of the Korteweg - de Vries equation for non-sta-
tionary wind-generated waves is larger than that for fully
developed sea.



312

Wic
1000 ~

100 -

10

1
1e-005

T T
0.001 0.01 0.1 1

fetch
Fig. 3. Domain applicability of the Korteweg - de Vries equa-
tion for non-stationary wind-generated waves (between
two lines).
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3.3 Swell

The swell height and its period depend on the wind
velocity in the storm area and on the distance from it. Due
to the dispersion the irregular disturbance transforms into
dispersive packet, where waves with greater length are
speeder. The characteristic wave period could be found
through the stationary phase approximation (Bowden, 1983).

X
t

T= 13)

X

The wave height decreases as x™? because of dispersion.
It follows, that wave becomes longer and more linear with
distance. Note that taking into account real turbulent vis-
cosity the spectrum becomes more narrow, due to exponen-
tial decay of the spectral components with the decrement
proportionate to @?. Due to this the swell characterized by
long waves of weak steepness and long crests in the area far
from the storm zone. So, the irregular waves corresponding to
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Fig. 5. Frequency spectra of the wind-generated waves in shallow water (a) A =7 m, H,=2.5m, 7.=6.8 5, (b) /=5 m, H,=1.7 m, ;=5 s.
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Fig. 4. Frequency spectra of swell in shallow water( f=w/2x,
H=0.3 m, £,=0.07 Hz, W<5 m/s).

the swell have to satisfy to the Korteweg - de Vries equation.
Low-energy swell with a peak frequency of 0.07 Hz
(f=w/2r, E( f )=2rnS(w)) (Fig. 4), a significant wave height
of 0.3 m was observed in light wind conditions (speeds<5 m s)
(Herbers et al., 2002). The wave measurements were made
with sensors (4, 5, 7) located along a cross-shore transect
100, 150 and 400 m from the shoreline in nominal depths
of 2.5, 3.5x5.0 m. For instance, for the water depth equal to
8 m calculated parameters of nonlinearity and dispersion
are £=0.038 and ;4=0.391. The Ursell number is Ur = 0.274.
These estimates confirm the applicability of the Korteweg - de
Vries equation for the swell description in shallow water.
Wind-generated wave measurements in shallow water.
The spectra of the wind-generated waves in shallow water,
obtained in the North Sea near the Netherlands (Haringv-
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liet), are presented in Fig. 5 (depth is 5-7 m, wind velocity
is W= 14 m/s) where in-situ measurements are marked
with dot line. Solid line is the result of numerical simula-
tions using SWAN model (Ris et al., 1999). The calculated
parameters of nonlinearity, dispersion and Ursell number
are equal: (a) €=0.36, u=0.64, Ur = 0.70, (b) £=0.34,
1=0.54, Ur=0.90. So, our estimates based on the experi-
mental data show the applicability for the wind-generated
waves in shallow water.

4. Statistical approach of the freak wave
formation

As it was noted above, the randomly changing wind-
generated waves are considered as a stochastic process, and
different statistical methods are applied to describe it
(Bychkov et al., 1971; Lavrenov, 1998; Massel, 1996).

In the first approach a wind-generated wave process
could be regarded as a narrow band random process with a
Gaussian statistics. Then the probability density function of
the wave amplitudes is described by a Rayleigh distribution.

A (4
pl4) = Gzexp(—ZO'z) (14)

where 62 is a wave field variance. It could be found through
the Gaussian distribution of the surface elevation 7j(x, 7).

exp(——ni) (15)

26"

p(n) =

1
J2ro
or through the spectrum, S(w)

o = [T S(w)dw (16)

It is clear that all this formulas are valid for the stationary
random process, but doesn’t hold true in reality. Especially
for freak waves due to the rarity of this event, it is hard to
say if this process is stochastic or determinate. Neverthe-
less, first we will discuss freak wave formation and predic-
tion within the Rayleigh probability distribution.

As it is known, the probability of the wave appearance
with given amplitude could be found from Eg. (15) through
the integral distribution function

P(4) = exp(~2A—02_2) an

Within the approximation of a narrow-band random pro-
cess the wave height is defined through the wave amplitude
as H=2A. Then the distribution function of wave heights
will be defined as

P(H)= exp(—%) (18)

The relation between mean wave height and variance
will be the following.

H, = 270 (19

The significant wave height, H; could be defined as one
third of the biggest waves observed in the ocean. Using the
Rayleigh distribution, the significant wave height is (Bych-
kov et al., 1971; Massel, 1996)

H=4c (20)
The mean wave height relates to the significant height as

H=2n -16m @1

2m
Distribution function allows to estimate the probability
of the abnormal waves formation. Note, that according to
formula (18), such probability is not zero, what means that
such waves have to appear in reality. A freak wave is
defined through its height H;.

H/>2H, @2

We can simple evaluate the probability of its formation
within the Rayleigh distribution Eq. (18) which could be
written through the significant wave height.

2
PH) = exp[—zizj (23)
HS

This dependence is presented in Fig. 6. According to it,
the probability of extreme waves formation is not more
then P(2H;)=0.000336 or one wave from 3000 waves.
Taking into account that the period of wind-generated
waves is about of 10 s, we obtain that each 8-9 hours the
probability of such wave formation is rather big. As most of
the storms continue about 24 hours and more, abnormal
waves have to appear rather often in ocean. So, it follows
from the Rayleigh statistics that extreme waves with height
equal to 2-2.3 of significant wave height have to be
observed in the ocean quite often.
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Eq. (23) could be simply interpreted. If we choose a wave
with a maximal height H.. in a group of N waves, its proba-
bility will be P = 1/N. Substituting it to Eq. (23), the last one
could be rewritten as (Bychkov et al., 1971; Massel, 1996).

H,.= /%VHS 4)

This dependence is presented in Fig. 7. From this rela-
tion it follows that increasing the record length (number of
waves) weakly influences the maximal amplitude growing.
The analysis of the short time record will not give true pre-
diction of abnormal wave formation. Thus, for more reli-
able prediction of freak waves it is necessary to consider
large number of waves (more then 10000). It could be made
through the growing of the numerical domain or increasing
number of realizations with the following averaging.

It is clear that abnormal waves, as any distribution func-
tions tails, usually do not satisfy the statistical hypothesis,
which the waves properties are based on. That’s why the

empirical data are the primary base for freak wave forma-
tion analysis. It is not clear enough what the abnormal wave
is: it is the random realization of typical stochastic process
or the typical realization of the very rare random process
(Haver et al., 2000).

Other difficulties join with the shoal, where freak waves
are observed. In particular, near the offshore platforms in
the North Sea the water depth is about 20-70 m, and storm
waves can “feel” the bottom. The shallow waves, as it was
noted, are weakly dispersive, that is why there is a phase
correlation of different spectral components, broken the
Gaussian approximation of the random process. In this
cases different generalizations of the Rayleigh distribution
are used (Morf et al., 2000; Tomita et al., 2000).

So, some requirements to the numerical models of freak
waves formation follow from the statistical hypothesis. The
simplest way is to consider rather large domain for comput-
ing contained 3000 local waves and more. In this case each
realization will contain the abnormal wave and its statistics
will be increased. But it is difficult to carry out such exper-
iments due to computational constraints. To decrease the
number of waves in numerical domain, for instance in 10
times, we have to have no less than 10 realizations. More
over, in reality we have to carry out several sets of numeri-
cal experiments to increase number of random variables.
Series of simulations will be set to define the optimal con-
ditions for modelling of random process with real wind
wave spectrum.

5. Wind-generated wave modelling

We use the Longuet-Higgins model (Massel, 1996) to
describe wind-generated waves, according to which the sea
surface elevation 7)(x, ) is constructed as a following pro-
cess with random amplitudes, a;, and phases, ¢;.

n(x, 1) = Tacos(kx~wit+¢@,) 25)

where 7)(x, #) is a Gaussian process with a spectral density
S(w). The discrete amplitude of series Eq. (25) 1s a random
variable related to the spectrum S(w) by

a; = J25(@)Aw; (26)

here Aw is the sampling frequency. The phases of each har-
monic are uniformly distributed on the interval (0.27) and
produced by a random-number generator. For the rest
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numerical computations a spectrum of wind-generated waves
(Fig. 5a) measured in the North Sea (Hy=2.5 m, /=7 m, £=0.36,
1=0.64, Ur=0.70), is chosen. The dominant frequency is
@=0.74 s~ with sampling frequency equal to 0.03 s

The initial perturbation of 220-s record is presented on Fig. 8.

The corresponding autocorrelation function K(7) is given
on the Fig. 9, and correlation time is equal to 7= 90 s (about
15 waves). For numerical simulations of waves, the long
records (¢»7) are considered what implies that surface ele-
vations 7(¢) at times are uncorrelated. Series of 220-s
record are took up, each containing 32 waves. The number
of realizations is varied in the numerical experiments from
10 to 1000.

It is more reasonable to use wave amplitude A(x) (the
maximal wave profile elevation between two zeros) in
numerical simulations instead of wave height. To evaluate
the distribution probability, first the magnitude P is com-
puted, which is considered as a ratio of number of waves

K(7) 14

. Nandann /\A/\I\

Fig. 9. Correlation function.

with amplitude a to a general number of waves

m
=— 27
P=5 @7
then the distribution probability of the wave with amplitude
A exceeding a, is

F(a)=P(A>a) (28)

On Fig. 10 the theoretical Rayleigh probability Eq. (17),
marked with the solid line, and numerical experiments
obtained from Eq. (28) and averaged over 20, 40, 60 and 80
realizations (a) and over 200, 600, 1000 realizations (b), are
presented. The special interest is given to extreme waves
with amplitudes exceeded A,=H; /2, that is why it is neces-
sary to consider such big number of realization. According
to the Rayleigh theory, the probability of exceeding A;=24,
is equal P(A;)=0.000336 (this value is marked with dot line).
As it could be seen, the computed curve is well approached
with the theoretical one only in the case of small number of
realizations, but the freak waves are not observed (Fig.
10a). The increasing number of realizations leads to the
more stable shape of the computed curve in the range of
amplitudes up to 2-2.5. Note, that it moves below the Ray-
leigh curve. As it was mention the Rayleigh probability is
defined for the Gaussian narrow-band random process,
which is not corresponding to the spectrum of real wind-
generated waves (Massel, 1996).

Freak wave formation is a rare event, and doesn’t belong
to the averaged dependence. Its probability depends on the
number of realizations and, finally, on the number of waves
in the record. According to numerical simulations abnor-
mal waves appear in records with 200 and more realiza-
tions (the number of local waves is more then 5000). The
amplitude of freak wave is growing while increasing num-
ber of realizations (Fig. 10).

Increasing number of harmonics, what means the increas-
ing number of random variables, is made in the next series
of simulations. We consider twice more harmonics (256)
and averaged over 1000 realizations. It leads to the same
effect as 2000 realizations contained 128 harmonics were
considered (Fig. 10c).

Thus, it is necessary to consider rather large number of
local waves in the record (about 3-10 thousands of waves)
for the numerical modelling of freak waves formation in the
irregular wave field. It could be achieved while defining
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Fig. 10. Distribution functions of wave amplitudes.

frequency spectrum of 128 harmonics with 1000 realiza-
tions. Then the probability of the freak wave formation with
amplitude, for instance, 2.7 m will be 4 - 10-° according to
the computing.

As computed distribution function deflects a theoretical
one, more detailed data analysis is needed and the mean
wave height will be defined not through the dispersion of
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Fig. 11. Realization distribution of the mean amplitudes.

F(A) 4

0.1

0.01

0.001

0.0001

1e-005

0 1 2 3 A(m)

Fig. 12. Rayleigh distribution function (dot line and solid line)
and computed curve.

the wave profile ordinates but directly from the wave record.

As it is well observed (Fig. 11), the variance of the mean
amplitude values A,, is not so big, and we can take rather small
number of realizations to average the mean amplitude over.

Thus, if we consider the distribution function obtained
through the mean amplitude value (solid line on Fig. 12)
and compare it to the distribution function calculated through
the dispersion (dot line on Fig. 12), it is well noticed that
the first one better conforms to the numerical simulation
results (star symbol on Fig. 12).

As it was demonstrated, that amplitude probability distri-
bution is less then Rayleigh statistics, it is interesting how
the spectrum shape influences on this characteristic. We
consider JONSWAP spectrum with different parameters of
yand o, which characterize the spectrum width and height.
And following to this parameters we try to find if the distri-
bution function calculated through the dispersion would be
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Fig. 13. JONSWAP spectrum for y=1.

more or less then Rayleigh distribution.

The numerical experiments of JONSWAP spectrum
modelling with different values of parameters are set. To
increase the number of random variables series we consider
6 samples of time, each of them contains 1000 realizations
of 250 seconds wave records.

=1, 0c=0.0081, =0.012, a=0.015, 0=0.018, 0=0.02;
y=4, a=0.0081, 0=0.012, 0=0.015, 0=0.018, 0=0.02;
=10, 0=0.0081, a=0.012, &=0.015, 0=0.018, 0=0.02.

The initial shape of JONSWAP spectrum depending on
the parameter o is represented in Fig. 13. Using different
shapes of initial spectrum theoretical and computed distri-

FA) 1
0.1
0.01
0.001
0.0001

1e-005

1e-006

0 10 20 30 40 50

Fig. 14. Computed distributional functions (marked with dots)
and Rayleigh curves (solid lines). JONSWAP parameters:
¥ =10, (a) a=0.0081, (b) 0=0.012, (¢) 0=0.016.

bution functions (Fig. 14) are calculated. The obtained
results are the same like in previous numerical experiments:
the experimental curves move below the theoretical one,
what does not depend on the spectrum shape. The Rayleigh
distribution, calculated through the mean averaging ampli-
tudes of the wave records, shows the best correlation with
computed results.

6. Conclusion

Data of freak wave observation in shallow water is given.
The applicability of the Korteweg - de Vries equation to
describe freak wave phenomenon in the random shallow
sea is discussed. First, the weakness of nonlinearity and dis-
persion parameters is considered for different types of
wind-generated water waves (fully developed sea, non-sta-
tionary wind waves and swell), including in-situ measured
spectra. It is shown that the Korteweg - de Vries equation
could be applied for the description of wind-generated
water waves in the coastal zone at some limitations on wind
speed, fetch, basin depth and swell parameters. The numer-
ical modelling of the Korteweg-de Vries equation is applied
to obtain detail characteristics of the freak wave phenome-
non. Due to rare character of the freak waves, numerical
simulation requires large computed domain, large computa-
tion time and large number of realizations; corresponding
requirements are discussed. The numerical modelling of
the wave records with given spectrum confirmed that the
amplitude distribution function is less then the Rayleigh
statistics in large-amplitude range. For stable evaluation of
the amplitude distribution of the freak waves with heights
equal to 2-2.3 significant wave height it is necessary to
have about 10 thousands of local waves in the wave record
according to our numerical simulations.
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