DOI QR코드

DOI QR Code

Design of Stabilizing Controller for an Inverted Pendulum System Using The T-S Fuzzy Model

T-S 퍼지 모델을 이용한 역진자 시스템의 안정화 제어기 설계

  • 배현수 (창원대학교 제어계측공학과) ;
  • 권성하 (창원대학교 제어계측공학과) ;
  • 정은태 (창원대학교 제어계측공학과)
  • Published : 2002.11.01

Abstract

We presents a new method of constructing an equivalent T-S fuzzy model by using the sum of products of linearly independent scalar functions from nonlinear dynamics. This method exactly expresses nonlinear systems and automatically determines the number of rules. We design a stabilizing controller f3r ul inverted pendulum system by using the concep of parallel distributed compensation (PDC) and linear matrix inequalities (LMIs) based on the proposed T-S fuzzy modeling method. We show effectiveness of a systematically designed fuzzy controller based on the proposed T-S fuzzy modeling method through the simulation and experiment of an inverted pendulum system.

Keywords

References

  1. T. Takagi and M. Sugeno, 'Fuzzy identification of systems and its applications to modeling and control,' IEEE Trans. Syst, Man, Cybern., Vol. 15, No. 1, pp. 116-132, 1985
  2. H. O. Wang, K. Tanaka, and M. F. Griffin, 'An approach to fuzzy control of nonlinear systems: Stability and design issues,' IEEE Trans. Fuzzy Syst., Vol. 2, No. 1, pp. 14-23, Feb. 1996 https://doi.org/10.1109/91.481841
  3. P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, LMI Toolbox, The Math Works Inc., 1996
  4. S. Abe, 'Fuzzy function approximators with ellipsoidal regions,' IEEE Trans. Syst., Man, Cybern.-Part B: Cybernetics, Vol. 29, No. 4, pp. 654-661, Aug. 1999 https://doi.org/10.1109/3477.790450
  5. Q. Gan and C. J. Harris, 'Fuzzy local linearization and local basis function expansion in nonlinear system modeling,' IEEE Trans. Syst., Man, Cybern.-Part B: Cybernetics, Vol. 29, No. 4, pp. 559-565, Aug. 1999 https://doi.org/10.1109/3477.775275
  6. J. Abonyi, R. Babuska, and F. Szeifert, 'Fuzzy modeling with multivariate membership function: Gray-box identification and control design,' IEEE Trans. Syst., Man, Cybern.-Part B: Cybernetics, Vol. 31, No. 5, pp. 755-767, Oct. 2001 https://doi.org/10.1109/3477.956037
  7. J. Yen, L. Wang, and C. W. Gillespie, 'Improving the interpretability of TSK fuzzy models by combining global learning and local learning,' IEEE Trans. Fuzzy Syst., Vol. 6, No. 4, pp. 530-537, Nov. 1998 https://doi.org/10.1109/91.728447
  8. X. J. Ma, Z. Q. Sun, and Y. Y. He, 'Analysis and design of fuzzy controller and fuzzy observer,' IEEE Trans. Fuzzy Syst., Vol. 6, No. 1, pp. 41-51, Feb. 1998 https://doi.org/10.1109/91.660807
  9. X. J. Ma and Z. Q. Sun, 'Output tracking and regulation of nonlinear system based on Takagi-Sugeno fuzzy model,' IEEE Trans. Syst., Man, Cybern.-Part B: Cybernetics., Vol. 30, No. 1, pp. 47-59, Feb. 2000 https://doi.org/10.1109/3477.826946
  10. C. S. Tseng, B. S. Chen, and H. J. Uang, 'Fuzzy tracking control design for nonlinear dynamic systems via T-S fuzzy model,' IEEE Trans. Fuzzy Syst., Vol. 9, No. 3, pp. 381-392, June 2001 https://doi.org/10.1109/91.928735
  11. K. Tanaka, T. Ikeda, and H. O. Wang, 'Robust stabilization of a class of uncertain nonlinear systems via fuzzy(ontrol: Quadratic stabilizability, $H^{\infty}$ contol theory, and linear matrix inequalities,' IEEE Trans. Fuzzy Syst., Vol. 4, No. 1, pp. 1-13, Feb. 1996 https://doi.org/10.1109/91.481840
  12. K. Tanaka, T. Ikeda, and H. O. Wang, 'Fuzzy regulators and fuzzy observers: Relaxed stability conditions and LMI-based design,' IEEE Trans. Fuzzy Syst., Vol. 6, No. 2, pp. 250-265, May 1998 https://doi.org/10.1109/91.669023
  13. T. Taniguchi, K. Tanaka, H. Ohtake, and H. O. Wang, 'Model construction, rule reduction, and robust compen -sation for generalized form of Takagi-Sugeno fuzzy systems,' IEEE Trans. Fuzzy Syst., Vol. 9, No. 4, pp. 525-538, Aug. 2001 https://doi.org/10.1109/91.940966
  14. S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in system and Control Theory, SIAM, 1994