DOI QR코드

DOI QR Code

Robust Controller Design for Non-square Linear Systems Using a Passivation Approach

수동화 기법에 의한 비정방 선형 시스템의 강인 제어기 설계

  • 손영익 (동아대학교 전기전자컴퓨터공학부)
  • Published : 2002.11.01

Abstract

We present a state-space approach to design a passivity-based dynamic output feedback control of a finite collection of non-square linear systems. We first determine a squaring gain matrix and an additional dynamics that is connected to the systems in a feedforward way, then a static passivating (i.e. rendering passive) control law is designed. Consequently, the actual feedback controller will be the static control law combined with the feedforward dynamics. A necessary and sufficient condition for the existence of the parallel feedfornward compensator (PFC) is given by the static output feedback fomulation, which enables to utilize linear matrix inequality (LMI). The effectiveness of the proposed method is illustrated by some examples including the systems which can be stabilized by the proprotional-derivative (PD) control law.

Keywords

References

  1. C. I. Byrnes, A. Isidori, and J. C. Willems, 'Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems,' IEEE Trans. Automat. Contr., Vol. 36, No. 11, pp. 1228-1240, 1991 https://doi.org/10.1109/9.100932
  2. H. K. Khalil, Nonlinear Systems, Prentice-Hall, 2nd Ed., 1996
  3. R. Sepulchre, M. Jankovic, and P. V. Kokotovic, Constructive Nonlinear Control, Springer-Verlag, 1997
  4. R. Ortega, A. Loria, P. J. Nicklasson, and H. Sira-Ramirez, Passivity-based Control of Euler-Lagrange Systems, Springer-Verlag, 1998
  5. Hyungbo Shim and Jin H. Seo, 'Passivity framework for nonlinear state observer', Proa of ACC, pp. 699-705, 2000 https://doi.org/10.1109/ACC.2000.878991
  6. A. G. Kelkar and S. M. Joshi, 'Robust control of non-passive systems via passification', Proc. of ACC, 1997 https://doi.org/10.1109/ACC.1997.611938
  7. Young I. Son, Hyungbo Shim, and Jin H. Seo, 'Passification of nonlinear systems via dynamic output feedback', Journal of KIEE, pp. 23-28, 2000
  8. W. Sun, P. P. Khagonekar, and D. Shim, 'Solution to the positive real control problem for linear time-invariant systems,' IEEE Trans. Automat. Contr., Vol. 39, pp. 2034-2046, 1994 https://doi.org/10.1109/9.328822
  9. C. - H. Huang, P. A. Ioannou, J. Maroulas, and M. G. Safonov, 'Design of strictly positive real systems using constant output feedback,' IEEE Trans. Automat. Contr., Vol. 44, No. 3, pp. 569-573, 1999 https://doi.org/10.1109/9.751352
  10. I. Bar-Kana, 'Parallel feedforward and simplified adaptive control,' Int. J. Adaptive Control and Signal Processing, Vol. 1, No. 2, pp. 95-109, 1987 https://doi.org/10.1002/acs.4480010202
  11. H. Kaufman, I. Bar-Kana, and K. Sobel, Direct Adaptive Control Algorithms, Springer-Verlag, 2nd Ed., 1998
  12. Z. Iwai and I. Mizumoto, 'Realization of simple adaptive control by using parallel feedforward compensator,' Int. J. Control, Vol. 59, No. 6, pp. 1543-1565, 1994 https://doi.org/10.1080/00207179408923145
  13. A. Saberi and P. Sannuti, 'Squaring down by static and dynamic compensators', IEEE Trans. Automat. Contr., Vol. 33, No. 4, pp. 358-365, 1988 https://doi.org/10.1109/9.192190
  14. Y. Kawasaki, I. Mizumoto, R. Wakamiya, and Z. Iwai, 'Adaptive control of an inverted pendulum system,' In Proc. of Asia-Pacific Vibration Conference '93, Japan, Vol. 3, pp. 1114-1119, 1993
  15. F. C. Lee, H. Flashner, and M. G. Safonov, 'Positivity embedding for noncolocated and nonsquare flexible structures,' Proc. of ACC, pp. 267-271, 1994 https://doi.org/10.1109/ACC.1994.751740
  16. P. Akella and J.T. Wen, 'Synthesized passive feedback control of sensor-rich structures,' Proc. of ACC, pp. 2652-2656, 1997 https://doi.org/10.1109/ACC.1997.611937
  17. Y.-Y. Cao and Y.-X. Sun, 'Static output feedback simultaneous stabilization: ILMI approach,' Int. J. Control, Vol. 70, No. 5, pp. 803-814, 1998 https://doi.org/10.1080/002071798222145
  18. R. E. Benton, Jr. and D. Smith, 'A non-iterative LMl-based algorithm for robust static-output-feedback stabilization,' Int. J. Control, Vol. 72, No. 14, pp. 1322-1330, 1999 https://doi.org/10.1080/002071799220290
  19. S. M. Joshi and A. G. Kelkar, 'Pasivity-based robust control of systems with redundant sensors and actuators,' Int. J. Control, Vol. 74, No. 5, pp. 474-481, 2001 https://doi.org/10.1080/00207170010010588
  20. I. N. Kar, 'Design of static output feedback controller for uncertain systems,' Automatica, Vol. 35, pp. 169-175, 1999 https://doi.org/10.1016/S0005-1098(98)00170-8
  21. Z. P. Jiang and D. J. Hill, 'Passivity and disturbance attenuation via output feedback for uncertain nonlinear systems,' IEEE Trans. Automat. Contr., Vol. 43, No. 7, pp. 992-997, 1998 https://doi.org/10.1109/9.701109
  22. J. C. Geromel, P. L. D. Peres, and S. R. Souza, 'Convex analysis of output feedback control problems: robust stability and performance,' IEEE Trans. Automat. Contr., Vol. 41, No. 7, pp. 997-1003, 1996 https://doi.org/10.1109/9.508904
  23. C. A. R. Crusius and A. Trofino, 'Sufficient LMI conditions for output feedback control problems,' IEEE Trans. Automat. Contr., Vol. 44, No. 5, pp. 1053-1057, 1999 https://doi.org/10.1109/9.763227
  24. V. Kuvcera and C.de Souza, 'A necessary and sufficient condition for output feedback stabilizability,' Automatica, Vol. 31, No. 9, pp. 1357-1359, 1995 https://doi.org/10.1016/0005-1098(95)00048-2
  25. I. Bar-Kana, R. Fischl, and P. Kalata, 'Direct position plus velocity feedback control of large flexible space structures,' IEEE Trans. Automat. Contr., Vol. 36, No. 10, pp. 1186-1188, 1991 https://doi.org/10.1109/9.90232
  26. J. Collado, R. Lozano, and I. Fantoni, 'Control of convey-crane based on passivity,' Proc. of ACC, pp. 1260-1264, 2000 https://doi.org/10.1109/ACC.2000.876702