Grounded-Plate PMOS 게이트 강유전체 메모리 셀을 이용한 새로운 FRAM 설계기술에 관한 연구

A Feasibility Study on Novel FRAM Design Technique using Grounded-Plate PMOS-Gate Cell

  • Chung, Yeonbae (School of Electronic and Electrical Engineering Kyungpook national University)
  • 발행 : 2002.12.01

초록

본 논문에서는 grounded-plate PMOS 게이트 (GPPG) 강유전체 메모리 셀을 이용한 새로운 FRAM 설계기술을 제안하였다 GPPG 셀은 PMOS와 강유전체 커패시터로 구성되며 셀 plate 는 ground 에 접지 된다. 제안된 FRAM 에서는 비트라인이 V/sub DD/로 precharge 되고, negative 전압 워드라인 기법이 사용되며, negative 펄스 restore 동작을 이용한다 GPPG 셀을 이용한 FRAM 구조는 셀 plate 구동기폭 사용하지 않으므로 메모리 셀 efficiency를 극대화 할 수 있는 장점이 있다. 또한 기존의 common-plate 셀과는 달리 제안된 FRAM 구조는 데이터의 읽기 및 쓰기 동작 시 강유전체 커패시터에 V/sub DD/거 충분한 전압이 가해지므로 저 전압 동작에 제한이 없다. 아울러 제안된 FRAM 구조는 필요한 8 비트 데이터만 선택하는 column-path 회로를 사용하므로 메모리 array 전력소모를 최소화 할 수 있다. 끝으로 0.5-um, triple-well/1-polycide/2-metal 공정을 이용한 4-Mb FRAM 설계를 통해 GPPG 셀 FRAM architecture 실현 가능성을 확인하였다.

In this Paper, a new FRAM design technique utilizing grounded-plate PMOS-gate (GPPG) ferroelectric cell is proposed. A GPPG cell consists of a PMOS access transistor and a ferroelectric data storage capacitor. Its plate is grounded. The proposed architecture employs three novel methods for cell operation: 1) $V_{DD}$ -precharged bitline, 2) negative-voltage wordline technique and 3) negative-pulse restore. Because this configuration doesn't need the plate control circuitry, it can greatly increase the memory cell efficiency. In addition, differently from other reported common-plate cells, this scheme can supply a sufficient voltage of $V_{DD}$ to the ferroelectric capacitor during detecting and storing the polarization on the cell. Thus, there is no restriction on low voltage operation. Furthermore, by employing a compact column-path circuitry which activates only needed 8-bit data, this architecture can minimize the current consumption of the memory array. A 4- Mb FRAM circuit has been designed with 0.3-um, triple-well/1-polycide/2-metal technology, and the possibility of the realization of GPPG cell architecture has been confirmed.

키워드

참고문헌

  1. T. Sumi et al., 'A 256kb nonvolatile ferroelectric memory at 3V and 100ns,' in ISSCC Dig. Tech. Papers, pp. 268-269, San Francisco, USA, Feb. 1994 https://doi.org/10.1109/ISSCC.1994.344646
  2. R. Ogiwara et al., 'A 0.5-um, 3-V, ITIC, 1-Mbit FRAM with a variable reference bit-line voltage scheme using a fatigue-free reference capacitor,' IEEE J. Solid-State Circuits, Vol. 35, No. 4, pp. 545-551, Apr. 2000 https://doi.org/10.1109/4.839914
  3. Y. Chung et al., 'A 3.3-V, 4-Mb nonvolatile ferroelectric RAM with selectively driven double-pulsed plate read/write-back scheme,' IEEE J. Solid-State Circuits, Vol. 35, No. 5, pp. 697-704, May 2000 https://doi.org/10.1109/4.841494
  4. C. Ohno et al., 'A highyly reliable ITIC 1Mb FRAM with novel ferro-programmable redundancy scheme,' in ISSCC Dig. Tech. Papers, pp. 36-37, San Francisco, USA, Feb. 2001 https://doi.org/10.1109/ISSCC.2001.912422
  5. D. Takashima et al., 'A 76-$mm^2$ 8-Mb chain ferroelectric memory,' IEEE J. Solid-State Circuits, Vol. 36, No. 11, pp. 1713-1720, Nov. 2001 https://doi.org/10.1109/4.962293
  6. H. Koike et al., 'A 60-ns 1-Mb nonvolatile ferroelectric memory with a nondriven cell plate line write/read scheme,' IEEE J. Solid-State Circuits, Vol. 31, No. 11, pp. 1625-1634, Nov. 1996 https://doi.org/10.1109/JSSC.1996.542307
  7. G. Braun et al., 'A robust $8F^2$ ferroelectric RAM cell with depletion device (DeFeRAM),' IEEE J. Solid-State Circuits, Vol. 35, No. 5, pp. 691-696, May 2000 https://doi.org/10.1109/4.841493
  8. J. Shin et al., 'A new charge pump without degradation in threshold voltage due to body effect,' IEEE J. Solid-State Circuits, Vol. 35, No. 8, pp. 1227-1230, Aug. 2000 https://doi.org/10.1109/4.859515