A Study on the PMC Adaptation for Speech Recognition under Noisy Conditions

잡음 환경에서의 음성인식을 위한 PMC 적응에 관한 연구

  • 김현기 (안동대학교 전자정보산업학부 멀티미디어공학전공)
  • Published : 2002.09.01

Abstract

In this paper we propose a method for performance enhancement of speech recognizer under noisy conditions. The parallel combination model which is presented at the PMC method using multiple Gaussian-distributed mixtures have been adapted to the variation of each mixture. The CDHMM(continuous observation density HMM) which has multiple Gaussian distributed mixtures are combined by the proposed PMC method. Also, the EM(expectation maximization) algorithm is used for adapting the model mean parameter in order to reduce the variation of the mixture density. The result of simulation, the proposed PMC adaptation method show better performance than the conventional PMC method.

본 논문에서는 잡음 환경에서 음성 인식기의 성능을 향상시키기 위한 방법을 제안한다. 제안한 방법은 기존의 PMC방법으로 상태 당 가지 수가 많은 모델을 만들 때 발생하는 확률 밀도 분포의 변화를 보상하기 위해 상태 수준에서 조합한 파라미터를 재 추정하여 각 상태에서 가지의 확률 분포의 변화를 적응시키는 방법이다. 상태 당 다수의 가지를 가지는 CDHMM은 제안한 PMC 방법과 조합된다. 또한, EM 알고리즘은 가지 평균의 분산을 줄이기 위하여 모델 평균 파라미터를 적응시키는데 사용한다. 그리고 시뮬레이션을 통하여 본 논문에서 제안한 PMC 방법은 기존의PMC 방법보다 더 향상된 성능을 얻을 수 있었다.

Keywords