Effect of calcination temperature on mechanical properties of spinel-glass dental composites

하소온도에 따른 인공치관용 스피넬-유리 복합체의 기계적 특성

  • Published : 2002.10.01

Abstract

The spinel was calcined at temperatures in the range of $1000^{\circ}C$ to $1300^{\circ}C$ with $100^{\circ}C$ interval to evaluate the effect of calcination temperature on mechanical properties of spinel-glass dental composites. Although the average particle size of spinel calcined at temperatures from $1000^{\circ}C$ to $1200^{\circ}C$ was within 2.8~3.0 $\mu\textrm{m}$, the spinel calcined at $1300^{\circ}C$ was 4.66 $\mu\textrm{m}$ due to abnormal grain growth. Shrinkage and pore size of the spinel preform decreased and increased, respectively, as calcination temperature increased, indicating that the calcination temperature was significant to the powder compaction and the densification of the composites as a result of particle size and distribution. The optimum strength and the fracture toughness of the composite calcined at $1200^{\circ}C$ were 284$\pm$40 MPa, 2.5$\pm$0.1 MPaㆍ$m^{1/2}$ respectively. Optical experimental results showed that transmittance of the spinel-glass composite in the visible region was twice higher than that of the alumina-glass composite, suggesting that the spinel-glass composites possessed better aesthetic properties for all-ceramic dental crown application.

하소온도를 $1000^{\circ}C$ ~ $1300^{\circ}C$ 로 변화시킨 스피넬 분말을 용융침투법으로 스피넬-유리 치관용 복합체를 제조하여 하소온도가 복합체에 기계적 특성에 미치는 영향을 조사하였다. 하소온도가 상관없이 분말의 평균 입도는 2.8 ~3.0 $\mu$m로 유지하다가 $1300^{\circ}C$ 에서 4.66 $\mu$m로 증가하였다. 하소온도가 증가하메 따라 전성형체의 수축률과 기공크기는 각각 감소하고 증가하였다. 따라서, 하소온도에 의한 분말의 입도 및 입도 분포가 치밀화에 지대한 영향을 미치는 것으로 추정된다. 최적의 기계적 특성을 가진 스피넬-유리 복합체의 하소온도는 $1200^{\cire}C$이었으며, 강도와 인성 값은 각각 284$\pm$40 MPa, 2.5$\pm$0.1 MPa $m^{1/2}$이었다. 투광성 실험결과, 상용 알루미나-유리 복합체보다 가시광선 영역에서 투과율이 두배이상 우수한 심미성이 관찰되었다.

Keywords

References

  1. D.-J. Kim, M.-H. Lee and C.-E. Kim, 'Mechanical Properties of Tape Cast Alumina-glass Dental Composites', J. Am. Ceram. Soc. 82(11) (1999) 3167
  2. D.Y. Lee, J.-W. Jang, B.-S. Kim, D.-I. Kim and Y-S. Song, 'Kinetic Study of $La_{2}O_{3}-Al_{2}O_{3}-SiO_{2}$ Glass Infiltration into Spinel Preforms', J. Kor. Crystal Growth and Crystal Techol. 12(1) (2002) 31
  3. D.Y. Lee, J.-W. Jang, M.-H. Lee, D.-J. Kim, I.-S. Park, J.-K. Lee and B.-Y. Kim, 'Glass-alumina Composites Prepared by Melt-infiltration: I. Effect of Alumina Particle Size', J. Kor. Ceram. Soc. 38(9) (2001) 799
  4. D.Y. Lee, J.-W. Jang, M.-H. Lee, J.-K. Lee, D.-J. Kim and I.-S. Park, 'Glass-alumina Composites Prepared by Melt-infiltration: II. Kinetic Studies', J. Kor. Ceram. Soc. 39(2) (2002) 145
  5. D.Y. Lee, D.-J. Kim and Y.-S. Song, 'Properties of Glass-spinel Composites Prepared by Melt Infiltration', J. Mater. Sci. Lett. 21(15) (2002) 1223
  6. W.B. Hillig, 'Melt Infiltration Approach to Ceramic Matrix Composites', Comm. Am. Ceram. Soc. 71(2) (1988) C96 https://doi.org/10.1111/j.1151-2916.1988.tb05840.x
  7. E. Ryshkewitch, Oxide Ceramics, Academic Press, New York (1960) 257
  8. H.C. Park, Y.B. Lee, K.D. Oh and F.L. Riley, 'Grain Growth in Sintered $MgAl_{2}O_{4}$ Spinel', J. Mater. Sci. Lett. 16 (1997) 1841
  9. C.-J. Ting and H.-Y. Lu, 'Hot-pressing of Magnesium Aluminate Spinel-I, Kinetics and Densification Mechanism', Acta Mater. 47(3) (1999) 817
  10. C.-J. Ting and H.-Y. Lu, 'Hot-pressing of Magnesium Aluminate Spinel-II, Microstructure Development', Acta Mater. 47(3) (1999) 831
  11. A. Granon, P. Goeuriot and F. Thevenot, 'Aluminum Magnesium Oxynitride: A New Transparent Spinel Ceramic', J. Eur. Ceram. Soc. 15 (1995) 249
  12. V. Montouillout, D. Massiot, A. Douy and J.P. Coutures, 'Characterization of $MgAl_{2}O_{4}$ Precursor Powders Prepared by Aqueous Route', J. Am. Ceram. Soc. 82(12) (1999) 3299
  13. R. Sarkar, S.K. Das and G. Banerjee, 'Effect of Attritor Milling on the Densification of Magnesium Aluminate Spinel', Ceram, Intl. 25 (1999) 485
  14. H. Hornberger, 'Strength Microstructure Relationships in a Dental Alumina Glass Composite', Ph.D. Dissertaion, University of Birmingham (1995)
  15. W.D. Wolf, L.F. Francis, C.-P. Lin and W.H. Douglas, 'Melt-infiltration Processing and Fracture Toughness of Alumina-glass Dental Composites', J. Am. Ceram. Soc. 76(10) (1993) 2691
  16. R.M. German, 'Sintering Densification for Powder Mixtures of Varying Distribution Widths', Acta Metall. Mater. 40(9) (1992) 2085
  17. T. Yeh and M.D. Sacks, 'Effect of Particle Size Distribution on the Sintering of Alumina', J. Am. Ceram. Soc. 71(12) (1988) C484
  18. D.Y. Lee, D.-J. Kim and Y.-S. Song, 'Effect of Alumina Particle Size and Distribution on Infiltration Rate and Fracture Toughness of Alumina-glass Composites Prepared by Melt Infiltration', Mater. Sci. & Eng. A, in press
  19. W.B. Hillig, 'Ceramic Composites by Infiltration', Ceram, Eng. Sci. Proc. 6 (1985) 674
  20. D.Y. Lee, D.-J. Kim and B.-Y. Kim, 'Influence of Alumina Particle Size on Fracture Toughness of (Y,Nb)TZP/ $Al_{2}O_{3}$ Composites', J. Eur. Ceram. Soc. 22(13) (2002) 2173