Unit Root Tests for Autoregressive Moving Average Processes Based on M-estimators

  • Shin, Dong-Wan (Department of Statistics, Ewha Womans University) ;
  • Lee, Oesook (Department of Statistics, Ewha Womans University)
  • 발행 : 2002.09.01

초록

For autoregressive moving average (ARMA) models, robust unit root tests are developed using M-estimators. The tests are parametric in the sense ARMA parameters are estimated jointly with unit roots. A Monte-Carlo experiment reveals superiority of the parametric tests over the semipararmetric tests of Lucas (1995a) in terms of both empirical sizes and powers.

키워드

참고문헌

  1. Boiometrika v.80 Some tests for unit roots in autoregressive-integrated-moving average models with deterministic trends Ahn, S.K. https://doi.org/10.1093/biomet/80.4.855
  2. Econometrica v.59 Heteroskedasticity and autocorrelation consistent covariance matrix estimation Andrews, D.W.K. https://doi.org/10.2307/2938229
  3. The Annals of Statistics v.19 Maximum likelihood type setimation for nearly nonstationary autoregressive time series Cox, D.D.;Llatas, I. https://doi.org/10.1214/aos/1176348240
  4. Journal of the American Statistical Association v.74 Distribution of the estimators for autoregressive time series with a unit root Dickey, D.A.;Fuller, W.A. https://doi.org/10.2307/2286348
  5. Journal of Business v.38 The behavior of stock market prices Fama, E.F. https://doi.org/10.1086/294743
  6. Econometric Theory v.12 Asymptotic theory of LAD estimation in a unit root process with finite variance errors Herce, M.A. https://doi.org/10.1017/S0266466600006472
  7. The Canadian Journal of Statistics v.17 Limit theory for autoregressiv-parameter estimates in an infinite-variance random walk Knight, K. https://doi.org/10.2307/3315522
  8. Handbook of Statistics v.5 Robustness in time series and estimating ARMA models Martin, R.D.;Yohai, V.J.;P.R. Krshnaiah(ed.0 https://doi.org/10.1016/S0169-7161(85)05006-4
  9. Econometric Reviews v.12 Modeling asset returns with alternative stable distributions Mittnik, S.;Rachev, S.T. https://doi.org/10.1080/07474939308800266
  10. Econometric Theory v.11 Unit root tests based on M-estimators Lucas, A. https://doi.org/10.1017/S0266466600009191
  11. Journal of Econometics v.66 An Outlier robust unit root test with an application to the extneded Nelson-Plosser data Lucas, A. https://doi.org/10.1016/0304-4076(94)01613-5
  12. Journal of Econometics v.48 Testing for unit roots in autoregressive moving average models: an instrumental Variable approach Pantula, S.G.;Hall, A. https://doi.org/10.1016/0304-4076(91)90067-N
  13. Econometrica v.55 Time series regression with a unit root Phillips, P.C.B. https://doi.org/10.2307/1913237
  14. Journal of Econometics v.47 Unit roots test for time series data with a linear time trend Said, E.S. https://doi.org/10.1016/0304-4076(91)90104-L
  15. Journal of the American Statistical Association v.80 Hypothesis testing in ARIMA(p,1,q) models Said, E.S.;Dickey, D.A. https://doi.org/10.2307/2287899
  16. Journal of Business & Economic Statistics v.7 Tests for unit roots: A Monte Carlo investigation Schwert, G.W. https://doi.org/10.2307/1391432
  17. Journal of Time Series Analysis v.19 Unit root tests based on unconditional maximum likelihood estimation for the autoregressive moving average Shin, D.W.;Fuller, W.A. https://doi.org/10.1111/1467-9892.00110
  18. Technical Report M-estimation for regressions with intergrated regressors and ARMA errors Shin, D.W.;Lee, O.
  19. Econometric Theory v.15 Unit root tests based on adaptive maximum likelihood estimation Shin, D.W.;So, B.S.
  20. Statistics & Probability Letters v.44 Normal tests for unit root tests in autoregressiv processes with infinite variances or finite variances Shin, D.W.;So, B.S. https://doi.org/10.1016/S0167-7152(99)00031-0
  21. Journal of Time Series Analysis v.16 Results on estimation and testing for unit root in the nonstationary autoregressive moving-average model Yap, S.F.;Reinsel, G.C. https://doi.org/10.1111/j.1467-9892.1995.tb00238.x