다중 텍스쳐 영상 분할을 위한 최적 가버필터의 설계

Optimal Gator-filter Design for Multiple Texture Image Segmentation

  • 이우범 (대구과학대학 컴퓨터공학과) ;
  • 김욱현 (영남대학교 컴퓨터공학과)
  • Lee, U-Beom (Dept.of Computer Engineering, Daegu Technology College) ;
  • Kim, Uk-Hyeon (Dept.of Computer Engineering, Yeungnam University)
  • 발행 : 2002.05.01

초록

다중 텍스쳐 영상으로부터 최적의 텍스쳐 특징을 생성하는 최적 필터 설계는 표면, 물체, 모양, 깊이 인식 등을 위한 텍스쳐 분석에 있어서 가장 성능이 뛰어난 기술 중의 하나이다. 그러나 대부분의 최적 필터설계는 많은 복잡한 계산량과 교사적 특성에 의해서 효율적인 텍스쳐 영역의 분할을 수행하지 못하는 실정이다. 따라서 본 논문에서는 다중 텍스쳐 영상에 내재하는 각 텍스쳐들의 공간 주파수 분석에 의한 효율적인 최적 가버필터 설계 방법을 제시한다. 설계된 최적 필터는 "Brodaz texture book"서 발췌한 다양한 형태의 다중 텍스쳐 영상을 생성하여 실험한 후 성공적인 결과를 보인다.

The design of optimal filter yielding optimal texture feature separation is a most effective technique in many torture analyzing areas, such as perception of surface, object, shape and depth. But, most optimal filter design approaches are restricted to the issue of computational complexity and supervised problems. In this paper, Our proposed method yields new insight into the design of optimal Gabor filters for segmenting multiple texture images. The optimal frequency of Gator filter is turned to the optimal frequency of the distinct texture in frequency domain. In order to show the performance of the designed filters, we have attempted to build a various texture images. Our experimental results show that the performance of the system is very successful.

키워드

참고문헌

  1. R. M. Haralick, 'Statistical and structural approaches to texture', Proceeding IEEE, 67(5), pp. 786-804, 1990 https://doi.org/10.1109/PROC.1979.11328
  2. F. Tomita and S. Tsuji, Computer Analysis of Visual Textures, Kluwer Academic Pub., 1990
  3. M. Tuceryan and A. K. Jain, 'Texture segmentation using Voronoi polygons', IEEE Trans. PAMI, 12, pp. 211-216, 1990 https://doi.org/10.1109/34.44407
  4. G. C. Cross and A. K. Jain, 'Markov random field texure modles', IEEE Trans. PAMI, 5, pp. 25-39, 1983 https://doi.org/10.1109/TPAMI.1983.4767341
  5. K. I. Laws, 'Rapid texture identification', in Proc. of the SPIE Conf. on Image Processing of Missile Guidance, pp. 376-380, 1980
  6. J. M. Coggin and A. K. Jain, 'A spatial filtering approach to texture analysis', Pattern Recognition, Letters, 3(3), pp. 195-203, 1985 https://doi.org/10.1016/0167-8655(85)90053-4
  7. A. K. Jain and F. Forrokhnia, 'Unsupervised texture segmentation using Gabor filters', Pattern Recognition, 24(12), pp. 1167-1186, 1991 https://doi.org/10.1016/0031-3203(91)90143-S
  8. H. E. Knutsson and G. H.Granlund, 'Texture analysis using two-dimensional quadrature filter', in Proc. IEEE Workshop on Computer Arch. for Pattern Analysis and Image Database Management, pp. 206-213. 1983
  9. M. Unser, 'Texture Classification and Segmentation Using Wavelet Frames', IEEE Trans. Image Processing, 4(11), pp. 1549-1560, 1995 https://doi.org/10.1109/83.469936
  10. I. Ng, T. Tan, and J. Kitter, 'On local linear transform and Gabor filter representation of texture', in Proc. Int. Conf. on Pattern Recognition, pp. 627-631, 1992 https://doi.org/10.1109/ICPR.1992.202065
  11. F. Ade, 'Characterization of texure by 'eigenfilter', Signal Processing, 5(5), pp. 451-457, 1983 https://doi.org/10.1016/0165-1684(83)90008-7
  12. A. C. Bovik, M. Clark, and W. S. Geisler, 'Multichannel texture analysis using localized spatial filter', IEEE Trans. PAMI, 12(1), pp. 55-73, 1990 https://doi.org/10.1109/34.41384
  13. H. A. Cohen and J. You, 'Texture statistic selective masks', In Proc. 9th Scandinavian Conf. on Image Processing, pp. 930-935, 1989
  14. K. I. Laws, Texured Image Segmentation, Ph.D. thesis, Univ. of Southern California, 1980
  15. J. Malik and P.Perona, 'A computational model of texture perception', Tech. Rep. UCB/CSD 89/491(Computer Science Division, Univ. of California, Berkeley), 1989
  16. F. Farrokhnia, Multi-channel filtering techniques for texture segmentation and surface quality inspection, Ph.D. thesis, Michigan Sate Univ., 1990
  17. T. Randen, V. Alvestad and J. H. Husoy, 'Optimal filtering for unsupervised texture feature extraction', In Proc. Visual Communication and Image Processing, 1996
  18. Woobeom Lee, and Wookhyun Kim, 'Self-Organization Neural Network for Multiple Texture Image Segmentation', TENCON'99 of IEEE region 10 Conference, pp. 730-733, 1999 https://doi.org/10.1109/TENCON.1999.818518
  19. R. Azencott, J. Wang, L. Younes, 'Texture Classification Using Windowed Fourier Filters', IEEE Trans. PAMI, 19(2), pp. 148-153, 1997 https://doi.org/10.1109/34.574796
  20. A. C. Bovik, M. Clark, and W. S. Geisler, 'Multichannel Texture Analysis Using Localized Spatial Filter', IEEE Trans. PAMI, 12(1), pp. 55-73, 1990 https://doi.org/10.1109/34.41384
  21. M. Parat and Y. Y. Zeevi, 'The Generalized Gabor Scheme of Image Representation in Biological and Machine Vision', IEEE Trans. On PAMI, 10(4), pp. 452-468, 1998 https://doi.org/10.1109/34.3910
  22. 平井有三, 視覺と記憶の情報處理, 培風管, 1995
  23. D. Marr, E. Hildreth, 'A theory of edge detection', Proc. R. Soc. Lond. B207, pp. 187-217, 1980
  24. D. J. Field, A. Hayes, and R. F. Hess, 'Contour Integration by the Human Visual System: Evidence for a Local Association Field', Vision Res., 33(2), pp. 173-193, 1993 https://doi.org/10.1016/0042-6989(93)90156-Q
  25. P. Brodaz, Texture: A Photographic Album for Artists and Designer, Dover Publication, 1966