• Title/Summary/Keyword: optimal filter

Search Result 841, Processing Time 0.027 seconds

Performance Analysis of the state model based optimal FIR filter (STATE MODEL BASED OPTIMAL FIR 필터의 성능분석)

  • Lee, Kyu-Seung;Kwon, Wook-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.917-920
    • /
    • 1988
  • The effects of the errors due to incorrect a priori informations on the noise model as well as the system model in the continuous state model based optimal FIR filter is considered. When the optimal filter is perturbed, the error covariance is derived. From this equation, the performance of the state model based optimal FIR filter is analyzed for the given modeling error. Also the state model based optimal FIR filter is compared to the standard Kalman filter by an example.

  • PDF

Model based optimal FIR synthesis filter for a nosy filter bank system

  • Lee, Hyun-Beom;Han, Soo-Hee;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.413-418
    • /
    • 2003
  • In this paper, a new multirate optimal finite impulse response (FIR) filter is proposed for the signal reconstruction in the nosy filter bank systems. The multirate optimal FIR filter replaces the conventional synthesis filters and the Kalman synthesis filter. First, the generic linear model is derived from the multirate state space model for an autoregressive (AR)input signal. Second, the multirate optimal FIR filter is derived from the multirate generic linear model using the minimum variance criterion. This paper also provides numerical examples and results. The simulation results illustrate that the performance is improved compared with conventional synthesis filters and the proposed filter has advantages over the Kalman synthesis filter.

  • PDF

Optimal Adaptive Filter Design of M-wave Elimination for Treating Tooth Grinding

  • Yeom, Hojun
    • International journal of advanced smart convergence
    • /
    • v.5 no.4
    • /
    • pp.66-70
    • /
    • 2016
  • When tooth grinding occurs, electrical stimulation is given at the same time, and tooth grinding stops on such stimulation. Electromyography signals are used as control signals of electrical stimulation to disturb tooth grinding. However because of the electrical stimulation, the M-waves are generated and mixed with spontaneous electromyogram. In this study, we designed an optimal filter to remove M-wave and conserve spontaneous electromyogram simultaneously. The inverse power method (IPM) showed that the optimal filter coefficient is the eigenvector corresponding to the minimum eigenvalue of the input covariance matrix. In order to evaluate the performance of the optimal filter, we compared using a conventional band pass filter and adaptive filter using least mean square algorithm. The experimental results show that the optimal filter can effectively remove the M-wave compared to the previously studied prediction error filter.

Multiple Texture Objects Extraction with Self-organizing Optimal Gabor-filter (자기조직형 최적 가버필터에 의한 다중 텍스쳐 오브젝트 추출)

  • Lee, Woo-Beom;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.10B no.3
    • /
    • pp.311-320
    • /
    • 2003
  • The Optimal filter yielding optimal texture feature separation is a most effective technique for extracting the texture objects from multiple textures images. But, most optimal filter design approaches are restricted to the issue of supervised problems. No full-unsupervised method is based on the recognition of texture objects in image. We propose a novel approach that uses unsupervised learning schemes for efficient texture image analysis, and the band-pass feature of Gabor-filter is used for the optimal filter design. In our approach, the self-organizing neural network for multiple texture image identification is based on block-based clustering. The optimal frequency of Gabor-filter is turned to the optimal frequency of the distinct texture in frequency domain by analyzing the spatial frequency. In order to show the performance of the designed filters, after we have attempted to build a various texture images. The texture objects extraction is achieved by using the designed Gabor-filter. Our experimental results show that the performance of the system is very successful.

Optimal Gator-filter Design for Multiple Texture Image Segmentation (다중 텍스쳐 영상 분할을 위한 최적 가버필터의 설계)

  • Lee, U-Beom;Kim, Uk-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.3
    • /
    • pp.11-22
    • /
    • 2002
  • The design of optimal filter yielding optimal texture feature separation is a most effective technique in many torture analyzing areas, such as perception of surface, object, shape and depth. But, most optimal filter design approaches are restricted to the issue of computational complexity and supervised problems. In this paper, Our proposed method yields new insight into the design of optimal Gabor filters for segmenting multiple texture images. The optimal frequency of Gator filter is turned to the optimal frequency of the distinct texture in frequency domain. In order to show the performance of the designed filters, we have attempted to build a various texture images. Our experimental results show that the performance of the system is very successful.

An Optimal FIR Filter for Discrete Time-varying State Space Models (이산 시변 상태공간 모델을 위한 최적 유한 임펄스 응답 필터)

  • Kwon, Bo-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1183-1187
    • /
    • 2011
  • In this paper, an optimal FIR (Finite-Impulse-Response) filter is proposed for discrete time-varying state-space models. The proposed filter estimates the current state using measured output samples on the recent time horizon so that the variance of the estimation error is minimized. It is designed to be linear, unbiased, with an FIR structure, and is independent of any state information. Due to its FIR structure, the proposed filter is believed to be robust for modeling uncertainty or numerical errors than other IIR filters, such as the Kalman filter. For a general system with system and measurement noise, the proposed filter is derived without any artificial assumptions such as the nonsingular assumption of the system matrix A and any infinite covariance of the initial state. A numerical example show that the proposed FIR filter has better performance than the Kalman filter based on the IIR (Infinite- Impulse-Response) structure when modeling uncertainties exist.

Performance bounds of optimal FIR filter-under modeling uncertainty (모델 불확실성에 대한 초적 FIR 필터의 성능한계)

  • 유경상;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.64-69
    • /
    • 1993
  • In this paper we present the performance bounds of the optimal FIR filter in continuous time systems with modeling uncertainty. The performance measure bounds are calculated from the estimation error covariance bounds of the optimal FIR filter and the suboptimal FIR filter. Performance error bounds range are expressed by the upper bounds on the estimation error covariance difference between the real and nominal values in case of the systems with noise uncertainty or model uncertainty. The performance bounds of the systems are derived on the assumption that the system uncertainty and the estimation error covariance are imperfectly known a priori. The estimation error bounds of the optimal FIR filter is compared with those of the Kalman filter via a numerical example applied to the estimation of the motion of an aircraft carrier at sea, which shows the former has better performances than the latter.

  • PDF

Estimation error bounds of discrete-time optimal FIR filter under model uncertainty

  • Yoo, Kyung-Sang;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.352-355
    • /
    • 1995
  • In this paper, estimation error bounds of the optimal FIR (Finite Impulse Response) filter, which is proposed by Kwon et al.[1, 2], are presented in discrete-time systems with the model uncertainty. Performance bounds are here represented by the upper bounds on the difference of the estimation error covariances between the nominal and real values in case of the systems with the noise or model parameter uncertainty. The estimation error bounds of the discrete-time optimal FIR filter is compared with those of the Kalman filter via a numerical example applied to the simulation problem by Toda and Patel[3]. Simulation results show that the former has robuster performance than the latter.

  • PDF

An Optimal Method to Improve the Visual Quality of Medical Images

  • Shin, Choong-ho;Jung, Chai-yeoung
    • Journal of Integrative Natural Science
    • /
    • v.8 no.2
    • /
    • pp.141-144
    • /
    • 2015
  • As the visual quality of X-ray images is a critical reference for the accuracy of the clinical diagnosis, the methods to improve the quality of X-ray images have been investigated. Among many existing methods, using frequency domain filter is a very powerful method to improve the visual quality of images. In this paper, the inherent noises of the input images are suppressed by adding the Laplacian image to the subjected image. The medical X-ray images using the optimal high pass filter has shown improved edges. Further, the optimal high frequency emphasis filter has shown the improved contrast of flat areas by using the result image from the optimal high pass filter. Also the resulting images of the global contrast have improved by the histogram equalization. As a result, the proposed methods have shown enhanced contrast and edges of the images with noise canceling effect.

Performance bounds of continuous-time optimal FIR filter under modeling uncertainty (모델 불확실성에 대한 연속형 최적 FIR 필터의 성능한계)

  • Yoo, Kyung-Sang;Gwon, O-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.1
    • /
    • pp.20-24
    • /
    • 1995
  • In this paper we analyze the performance bounds of the optimal FIR filter in continuous time systems with modeling uncertainty. The performance bounds are presented by the estimation error convariance and they are here expressed by the upper bounds of the difference of the estimation error covariance between the real and nominal values in case of the system with model uncertainties whose upper bounds are imperfrctly known a priori. The performance bounds of the optimal FIR filter are compared with those of the Kalman filter via a numerical example applied to the estimation of the motion of an aircraft carrier at sea, which shows the former has better performances than the latter.

  • PDF