4H-SiC ${p^+}$접합의 해석적 항복 전압

Analytical Breakdown Voltage for 4H-SiC ${p^+}$ Junction

  • 정용성 (서라벌대학, 컴퓨터정보학부)
  • 발행 : 2002.01.01

초록

본 논문에서는 전자와 정공의 이온화 계수로부터 4H-SiC를 위한 유효 이온화 계수를 cㆍE/sup m/의 형태로 추출하였고, 이 유효 이온화 계수를 이용하여 4H-SiC p/sup +/n 접합에서의 항복시 임계 전계와 항복 전압을 위한 해석적 표현식을 유도하였다. 해석적 항복 전압 및 항복 전계 결과는 10/sup 15/㎝/sup -3/∼10/sup 18/㎝/sup -3/의 농도 범위에서 실험 결과와 비교하여 오차 범위 10% 이내로 잘 일치하였다.

In this paper, an effective ionization coefficient for 4H-SiC is extracted in the form of c .E$^{m}$ from ionization coefficients of electron and hole. Analytical expressions for critical electric field and breakdown voltage of 4H-SiC p$^{+}$n junction are derived by employing the effective ionization coefficient. The analytic results agree well with the experimental ones reported within 10% in error for the doping concentration in the range of 10$^{15}$ cm$^{-3}$ ~10$^{18}$ cm$^{-3}$ . .

키워드

참고문헌

  1. B. J. Baliga, 'Power semiconductor devices for variable-frequency drivers,' Proc. IEEE, Vol. 82, pp. 1112-1122, 1994 https://doi.org/10.1109/5.301680
  2. H. Morkoc, S. Strife, G. B. Gao, M. E. Lin, B. Sverdlov, and M Bums, 'Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,' J. Appl. Phys., Vol. 76, pp. 1363-1398, 1994 https://doi.org/10.1063/1.358463
  3. M. Bhatnagar and B. J. Baliga, 'Comparison of 6H-SiC, 3C-SiC, and Si for power devices,' IEEE Trans. Electron Devices, Vol. 40, No. 3, pp. 645-655, 1993 https://doi.org/10.1109/16.199372
  4. M. Ruff, H. Mtlehner, and R. Helbig, 'SiC devices : physics and numerical simulation,' IEEE Trans. Electron Devices, Vol. 41, pp. 1040-1054, 1994 https://doi.org/10.1109/16.293319
  5. M. W. Shin, G. L. Bilbro, and R. J. Trew, 'High temperature operation of N-type 6H-SiC and P-type diamond MESFET's,' in IEEE/ Cornell Conf., Ithaca, NY, 1993, pp. 421-430
  6. D. L Barrett and R B. Campbell, 'Electron mobility measurements in SiC polytypes,' J. Appl. Phys., Vol. 38, pp. 53-55, 1967 https://doi.org/10.1063/1.1709008
  7. W. J. Schaffer, G. H. Negley, K. G Irvine, and J. W. Palmour, 'Conductivity anisotropy in epitaxial 6H and 4H-SiC,' in Proc. Mat. Res. Soc. Symp, Vol. 339, pp. 595-600, 1994
  8. A. Itoh, H. Akita, T. Kirnoto, and H. Matsunami, 'High-quality 4H-SiC homoepitaxial layers grown by step-controlled epitaxy,' Appl. Phys. Lett., Vol. 65, pp. 1400-1402, 1994 https://doi.org/10.1063/1.112064
  9. K. J. Schoen, J. M. Woodall, J. A. Cooper, Jr., and M. R. Melloch, 'Design considerations and experimental analysis of high-voltage SiC Schottky barrier rectifiers,' IEEE Trans. Electron Devices, Vol. 45, pp. 1595-1604, 1995 https://doi.org/10.1109/16.701494
  10. A. Itoh, T. Kirnoto, and H Matsunami, 'High performance of high-voltage 4H-SiC Schottky barrier diodes,' IEEE Electron Device Letters, Vol. 16, pp. 280-282, 1995 https://doi.org/10.1109/55.790735
  11. H. Matsunami, 'Progress of semiconductor silicon carbide(SiC),' Electronics and Communications in Japan, Part 2, Vol. 81, pp. 38-44, 1998 https://doi.org/10.1002/(SICI)1520-6424(199807)81:7<38::AID-ECJA5>3.0.CO;2-0
  12. A. Itoh, T. Kirnoto, and H. Matsunami, 'Excellent reverse blocking characteristics of high-voltage 4H-SiC Schottky rectifiers with boron-implanted edge termination,' IEEE Electron Device Letters, Vol. 17, pp. 139-141, 1996 https://doi.org/10.1109/55.485193
  13. D. Alok, R. Raghunathan, and B. J. Baliga, 'Planar edge termination for 4H-silicon carbide devices,' IEEE Trans. Electron Devices, Vol. 43, pp. 1315-1317, 1996 https://doi.org/10.1109/16.506789
  14. R. Raghunathan, D. Alok, and B. J. Baliga, 'High voltage 4H-SiC Schottky barrier diodes,' IEEE Electron Device Letters, Vol. 16, pp. 226-227, 1995 https://doi.org/10.1109/55.790716
  15. J. Wang and B. W. Williams, 'Evaluation of high-voltage 4H-SiC switching devices,' IEEE Trans. Electron Devices, Vol. 46, pp. 589-597, 1999 https://doi.org/10.1109/16.748883
  16. S. Selberherr, Analysis and Simulation of Semiconductor Devices, Wien, Austria: Springer-Verlag, 1984
  17. W. Fulop, 'Calculation of avalanche breakdown of silicon p-n junctions,' Solid State Electronics, Vol. 10, pp. 39-43, 1967 https://doi.org/10.1016/0038-1101(67)90111-6
  18. T. H. Moon, Y. I. Choi, and S. K. Chung, 'Calculation of avalanche breakdown voltage of the InP $p^+-n$ junction,' Solid State Electronics, Vol. 37, pp. 187-188, 1994 https://doi.org/10.1016/0038-1101(94)90125-2
  19. Y. S. Chung, S. Y. Han, Y. I. Choi, and S. K. Chung, 'Closed-form analytical expressions for the breakdown voltage of GaAs parallel-plane $p^+n$ junction in <100>, <110>, and <111> orientations,' Solid State Electronics, Vol. 39, pp. 1678-1680, 1996 https://doi.org/10.1016/0038-1101(96)00096-2
  20. B. J. Baliga, Modern Power Devices, Wiley, New York, pp. 62-92, 1987
  21. 정용성, '6H-SiC $p^+n$ 접합의 항복 전압을 위한 해석적 모형,' 전자공학회논문지, 제38권, SD편, pp. 398-403, 2001
  22. J. W. Palmour, Cree Research, Triangle Park, NC, private communication
  23. R. Raghunathan, B. J. Baliga, 'P-type 4H and 6H-SiC high voltage Schottky barrier diodes,' IEEE Electron Device Letters, Vol. 19, pp. 71-73, 1998 https://doi.org/10.1109/55.661168