Development of a Microbial Consortium with High Cellulolytic Enzyme Production

섬유소 분해 효소의 고생산을 위한 복합균주 개발

  • 오영아 (전남대학교 공과대학 환경공학과) ;
  • 김경철 (전남대학교 공과대학 환경공학과) ;
  • 유승수 (전남대학교 공과대학 환경공학과) ;
  • 김성준 (전남대학교 공과대학 환경공학과)
  • Published : 2002.08.01

Abstract

A filamentous fungus, strain FB01 showing high $\beta$-glucosidase activity was isolated from a compost. This fungus was cocultured with Trichoderma viride to enhance the productivity of $\beta$-glucosidase by changing inoculation time of the fungus. The microbial consortium showed higher cellulolytic enzyme production than T. viride alone. The maximal enzyme production was obtained when the microbial consortium was cultured at 30$\^{C}$ and pH 6.0 for 10 days with the activities of CMCase, $\beta$-glucosidase, and avicelase of 2.0, 0.8, and 0.2 U/mL, respectively. These enzyme activities were 2, 4, and 2 times as high as those of CMCase, p-glucosidase, avicelase from T. viride, respectively, indicating that a synergistic interaction appeared between T. viride and strain FBOI . The serial subcultures with pH control increased $\beta$-glucosidase production about 3.2 times. Enzyme production using ricestraw as a carbon source showed that the activities of CMCase, $\beta$-glucosidase, and avicelase were 3.69, 0.76, 0.17 U/mL, respectively, and $\beta$-glucosidase activity was 1.5 times higher than that of T viride.

본 연구의 목적은 기존의 단일 균주보다 두 종의 서로 다른 균주를 복합시켰을 때 두 균주간의 상호 보완적인 면을 이용하여 효소생산을 극대화하기 위함이며, 다음과 같은 결론을 얻었다. 실험에서 사용된 T viride와 FB01는 최적 PH와 온도가 비슷하여 혼합배양이 가능하였으며, 이들의 복합균주를 개발하는데 성공하였다. 즉 두 균주는 회분배양 하였을 때, 서로의성장속도에 차이가 있었기 때문에 두 균주의 생장균형을 유지하기 위해 접종시기를 조절할 필요가 있었다. 접종시기를 변화시킴으로서 두 균주간의 상호작용으로 인해 단일 균주일때보다 CMCase, $\beta$-glucosidase 및 avicelase의 활성이 우수했으며 또한 계대배양을 통한 두 균주의 활성유지에 관한 실험에서는 pH 조절을 통해 $\beta$-glucosidase 활성이 최고 3.2배까지증가함을 알 수 있었다. 따라서 배양액내에서 초기 pH의 영향은 생산된 cellulase complex의 다양한 구성요소의 상대적인 농도를 결정하는 실질적인 요인으로 판명된다. pH 4.5에서의 enzyme activity는 12.5 U/mL CMCase, 2.46 U/mL If-glucosidase, 0.93 U/mL avicelase였으며 개발당시의 복합균주활성인, 2.04 U/ml CMCase, 0.78U/ml $\beta$-glucosidase, 0.2 U/mL avicelase과 비교할 때 각각 6, 3.2, 4.7배의 높은 활성을 보였다. 복합균주의 탄소원으로 볏짚을 이용했을 때 복합균주에 의한 효소생산이 단일 균주인 T. virile나 FB01보다 훨씬 높게 나타났으며, 이때의 볏짚의 최적 농도는 5%(w/v)였다. 이러한 배양조건에서 복합균주를 장기적으로 계대배양하면서 효소의 생산성 향상과 복합균주의 안정성을 관찰할 필요가 있다고 사료된다.

Keywords

References

  1. Busto, M. D., N. Ortega, and M. Prrez-Mateos (1996), Location, kinetics and stability of cellulase induced in Trichoderma reesei cultures, Biores. Technol. 57, 187- 192 https://doi.org/10.1016/0960-8524(96)00073-9
  2. Reetta, H., P. Elke, S. Pirkko, and L. Susan (1996), Production of endo-1,4- $\beta$ -glucanase and xylanase with nylon-web immobilized and free Trichoderma reesei, Enzyme Microb. Tech. 18, 495-501 https://doi.org/10.1016/0141-0229(95)00156-5
  3. Naticidad, O., D. B. Maria, and P. M. Manuel (2001), Kinetics of cellulose saccharification by Trichoderma reesei cellulases, Int. Biodeter. Biodegr. 47, 7-14 https://doi.org/10.1016/S0964-8305(00)00101-3
  4. Brown, H. L. and Alan B. (1999), Assessment of the biocontrol potential of a Trichoderma viride isolate, Int. Biodeter. Biodegr. 44, 219-223 https://doi.org/10.1016/S0964-8305(99)00082-7
  5. Kono, H., R. Markus, M. F. Waelchli, and T. Erata (1999), Transglycosylation of cellobiose by partially purified Trichoderma viride cellulase, Carbohyd. Res. 319, 29-37 https://doi.org/10.1016/S0008-6215(99)00105-6
  6. Abdel, N., A. Mohamed, and D. Y. Kwon (1992), The production of xylanase and $\beta$ -xylosidase by Aspergillus niger NRC 107, Kor. J. Appl. Microbial. Biotechnol. 5, 543-550
  7. Kang, S. W., S. W. Kim, and K. Kim (1994), Production of cellulase and xylanase by Aspergillus niger KKS, J. Microbial. Biotechnol. 4, 9-55 https://doi.org/10.1016/S0960-8524(96)00127-7
  8. Kim, D. S. and C. H. Kim (1992), Production and characterization of crystalline cellulose-degrading cellulase components from a thermophilic and moderately alkaphilic Bacterium, J. Microbial. Biotechol. 2, 7-13
  9. Wyk, J. P. H., M. A. Mogale, and T. A. Seseng (2000), Saccharificaion of used paper with different cellulases, BiotechnoL. Lett. 22, 491-494 https://doi.org/10.1023/A:1005648316531
  10. Marcel, G. C., P. Leticia, M. Patricia, and P. T. Robert (1999), Mixed culture solid substrate fermentation of Trichoderma reesei with Aspergillus niger on sugar cane baggages, Biores. Technol. 68, 173-178 https://doi.org/10.1016/S0960-8524(98)00139-4
  11. Moon, I. S., S. K. Park, and K. Y. Lee (1993), Production of $\beta$-glucosidase from Aspergillus niger, Kor. J. Biotechnol. Bioeng. 8, 409-414
  12. Mandels, M. and D. Sternberg (1976), Recent advances in cellulase technology, J. Ferment. Technol. 54, 267-286
  13. Daniel, M. B, D. R. Michael, and J. E. Stuart (1996), Protein methods, pp68-71, Wiley-Liss, New York
  14. Thomas, M. W. and K. M. Bhat (1988), Methods for measuring activity, Method Enzymol. 160, 87-112 https://doi.org/10.1016/0076-6879(88)60109-1
  15. Somogyi, A. M. (1952), A new reagent for determination of sugar, J. Biol. Chem. 195, 19-24
  16. Sharma, A., S. K. Khare, and M. N. Gupta (2001), Hydrolysis of rice hull by crosslinked Aspergillus niger cellulase, Biores. Technol. 78, 281-284 https://doi.org/10.1016/S0960-8524(01)00010-4
  17. Duff, S. J. B, G. C. David, and M. O. Fuller. (1985), Evaluation of the hydrolytic potential of a crude cellulase from mixed cultivation of Trichoderma reesei andAspergillus phoenicis, Enzyme Microb. Technol. 8, 305-308 https://doi.org/10.1016/0141-0229(86)90027-X
  18. Cho, N. C., K. H. Kim, S. B. Chun, and K. C. Chun (1990), Effect of cellobiose octaacetate, avicel, and KC-flock on production of avicelase from Penicillium verruculosum, Kor. J. Appl. Microbiol. Biotechnol' 18, 383-389