초록
Automated welding and soldering are an important manufacturing issue in order to lower the cost, increase the quality, and avoid labor problems. An off-line programming, OLP, is one of the powerful methods to solve this kind of diversity problem. Unless an OLP system is ready for the path optimization in welding and soldering, the waste of time and cost is unavoidable due to inefficient paths in welding and soldering processes. Therefore, this study attempts to obtain path optimization using a genetic algorithm based on artificial intelligences. The problem of welding path optimization is defined as a conventional TSP (traveling salesman problem), but still paths have to go through welding lines. An improved genetic algorithm was suggested and the problem was formulated as a TSP problem considering the both end points of each welding line read from database files, and then the transit problem of welding line was solved using the improved suggested genetic algorithm.