DOI QR코드

DOI QR Code

Band Lineup Types Based on Ge1-xSnx/Ge1-ySny(001)

Ge1-xSnx/Ge1-ySny(001)의 band lineup 유형

  • 박일수 (인하대학교 전자전기컴퓨터공학부) ;
  • 전상국 (인하대학교 전자전기컴퓨터공학부)
  • Published : 2002.09.01

Abstract

We present the band lineups of G $e_{1-}$x S $n_{x}$ G $e_{1-}$y S $n_{y(001)}$ heterostructures for the new devices. The energy gap of the bulk G $e_{1-}$x S $n_{x}$ alloy is calculated by taking into account the Vegard's law. The change of the energy gap due to the strain is understood in terms of the deformation Potential theory The valence band offset is obtained from the average bond energy model, where the changes of the band offset due to alloy compositions and strain are included. It is found that Ge/G $e_{1-}$y S $n_{y(001)}$ heterostructure has a staggered lineup type for 0$\leq$0.06 and a straddling one for 0.06$\leq$0.26. Meanwhile, Ge/G $e_{l-y}$ S $n_{y(001)}$ heterostructure has a staggered lineup type for 0$\leq$0.19 and a broken-gap one for 0.19$\leq$0.26. As a result, the various type of the G $e_{1-}$x S $n_{x}$ G $e_{1-}$y S $n_{y(001)}$ heterostructure can be applied for the useful device.evice.

Keywords

References

  1. G. He and H. A. Atwater, "Interbandtransitions in $Sn_{x}Ge_{I-X}$ alloys", Phys. Rev. Lett, Vol. 79, No. 10, p. 1937, 1997 https://doi.org/10.1103/PhysRevLett.79.1937
  2. O. Gurdal, P. Desjardins, J. R. A. Carlsson, N. Taylor, H. H. Radamson, J. -E. Sundgren, and J. E. Greene, "Low-temperature growth and critical epitaxial thicknesses of fully strained metastable $Ge_{1-x}Sn_x (\times \leq 0.26) alloys on Ge(001)2 \times1.$". J. Appl. Phys., Vol. 83, No. 1, p. 162, 1998 https://doi.org/10.1063/1.366690
  3. 박일수, 전상국, "$Ge_{1-y}Sn_y$ 위에 성장시킨$Ge_{1-x}Sn_x$ 또는 Ge 층에서 성장방향과 응력변형 조건에 따른 다이렉트 에너지 간격 특성연구", 전기전자재료학회논문지, 12권, 10호, p. 835, 1999
  4. 박일수, 전상국, "팽창 응력변형을 겪는 Ge에서 가전자대의 에너지구조 해석", 전기전자재료학회논문지, 12권, 12호, p. 1102, 1999
  5. J. Taraci, J. Tolle, J. Kouvetakis, M. R. McCartney, D. J. Smith, J. Menendez, and M. A. Santana, "Simple chemical routes to diamond-cubic germanium-tin alloys", Appl. Phys. Lett, Vol. 78, No. 23, p. 3607, 2001 https://doi.org/10.1063/1.1376156
  6. 박일수, 전상국, '완화된 또는 응력변형을 겪는 Ge과 $Ge_{0.8}Sn_{0.2}$에서 전자와 정공의 상태밀도 유효질량과 전도도 유효질량', 전기전자재료학회논문지, 13권,8호,P. 643, 2000
  7. 박일수, 전상국, '직접천이 띠간격을 갖는$Ge_{1-x}Sn_x/Ge_{1-y}(001)의 전기적 특성 연구', 전기전자재료학회논문지, 13권,12호, p. 989, 2000
  8. W. H. Kleiner and L. M. Roth, 'Deformation potential in germanium from optical ab-sorption lines for exciton formation', Phys. Rev. Lett, Vol. 2, No. 8, p. 334, 1959 https://doi.org/10.1103/PhysRevLett.2.334
  9. H. Hasegawa, 'Theory of cyclotron re-sonance in strained silicon crystals', Phys. Rev., Vol. 129, No. 3, p. 1029, 1963 https://doi.org/10.1103/PhysRev.129.1029
  10. S. Ke, R. Wang, and M. Huang, 'Valence-band lineups at highly strained Si-InP, Ge-InP, Ge-InAs, and Si-Ge interfaces', Solid State Communications, Vol. 93, No.12, p. 1009, 1994
  11. S. Ke, R. Wang, and M. Huang, "Averagebond-energy model for valence-band offsets: its physical basis, and applications to twenty eight heterojunctions", Z. Phys. B, Vol. 102, p. 61, 1997.
  12. C. G. Van de Walle and R. M. Martin, 'Theoretical study of band offsets at semiconductor interfaces', Phys. Rev. B Vol. 35, No. 15, p. 8154, 1987 https://doi.org/10.1103/PhysRevB.35.8154
  13. M. Cardona and N. E. Christensen, 'Acoustic deformation potentials and heterostructure band offsets in semiconductors' Phys. Rev. B Vol. 35, No. 12, p. 6182, 1987 https://doi.org/10.1103/PhysRevB.35.6182
  14. W. A. Harrison and J. Tersoff, 'Tight-binding theory of heterojunction band lineups and interface dipoles', J. Vac. Sci. Technol. B Vol. 4, No. 4, p. 1068, 1986 https://doi.org/10.1116/1.583544
  15. E. J. Caine, S. Subbanna, H. Kroemer, J. L. Merz, and A. Y. Cho, 'Staggered-lineup heterojunctions as sources of tunable below-gap radiation: Experimental verification', Appl. Phys. Lett, Vol. 45, No. 10, p. 1123, 1984 https://doi.org/10.1063/1.95040
  16. E. R. Brown, J. R. Soderstrom, C. D. Parker, L. J. Mahoney, K. M. Molvar, and T. C, McGill, 'Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes', Appl. Phys. Lett, Vol. 58. No. 20, p. 2291, 1991 https://doi.org/10.1063/1.104902
  17. C. Chang, L. L. Chang, E. E. Mendez, M. S. Christie, and L. Esaki, 'Electron densities in InAs-AlSb quantum wells', J. Vac. Sci. Technol B Vol. 2, No. 2, p. 214, 1974 https://doi.org/10.1116/1.582786
  18. A. F. J. Levi and T. H. Chiu, 'Room-temperature operation of hot-electron tran-sistors', Appl. Phys. Lett, Vol. 51, No. 13, p. 984, 1987 https://doi.org/10.1063/1.98784
  19. H. Sakaki, L. L. Chang, R. Ludeke, C, Chang, G. A. Sai-Halasz, and L. Esaki, "$In_{1-x}Ga_{x}As-GaSb_{1-y}As_{y} $ heterojunctions by molecular beam epitaxy", Appl. Phys. Lett, Vol. 31, No. 3, p. 211, 1977 https://doi.org/10.1063/1.89609
  20. J. R. Soderstrom, D. H. Chow, and T. C. McGill., 'New negative differential resis-tance device based on resonant interband tunneling', Appl. Phys. Lett, Vol. 55, No. 11, p. 1094, 1989 https://doi.org/10.1063/1.101715