Design and Fabrication of the Dipole-Fed Planar Array Antenna at X-Band

X밴드용 다이폴 급전 평면배열 안테나 설계 및 제작

  • 문성익 (제주대학교 대학원 통신공학과) ;
  • 양두영 (제주대학교 통신컴퓨터공학부)
  • Published : 2002.05.01

Abstract

In this paper, the dipole-fed planar array antenna applied Yagi-Uda antenna away theory to microstrip antenna is designed and fabricated at X-band. The design procedure of the dipole-fed planar array antenna with the wide bandwidth is presented to be easily practiced to a wireless communication system. The radiation pattern, return loss and bandwidth of the antenna are improved by the finite differential time domain(FDTD) numerical method. The propriety of analysis of planar dipole antenna is proved from the measured data. From the measured results, the antenna maximum gain is 4.9dBi at center frequency of 10GHz and frequency bandwidth is about 40%. Front-to-back ratio is 16dB, and half-power beam-width of E-plane and H-plane are 117$^{\circ}$and 156$^{\circ}$, respectively. When VSWR of antenna is less than 2, the measured results are agreed well with the theoretical values in the frequency range from 7.4GHz to 11.88GHz.

본 논문에서는 기존외 야기-우다 안테나 배열이론을 마이크로스트립 안테나에 접목시킨 X밴드용 다이폴 급전 평면배열 안테나를 설계하고 제작하였다. 그리고 넓은 대역폭을 갖는 무선통신 시스팀에 쉽게 적용시킬수 있는 다이폴 급전 평면배열 안테나의 설계 절차에 대하여 기술하였다. 또한 FDTD 수치해석법을 이용하여 안테나의 복사특성, 반사손실과 대역폭을 개선시켰으며 제작을 통해 평면형 안테나 해석의 타당성을 입증하였다. 제작한 결과, 10GHz의 중심주파수에서 안테나의 이득은 4.9dBi이고 대역폭은 약 40%, 전후방비는 16dB, E면과 H면의 반 전력 빔폭은 각각 117°와 156°이다. VSWR<2를 기준으로 했을 때, 7.4GHz∼11.88GHZ의 주파수 범위에서 측정결과와 이론적인 결과가 비교적 잘 일치하였다.

Keywords

References

  1. Yngvesson, 'End-fire tapered slot antennas on dielectric substrates' IEEE Trans. on Antennas Propagat., AP-33. No 12, pp. 1392-1400, Dec., 1985
  2. F. Croq and D. M. Pozar, 'Millimeter-wave design of wide-band aperture-coupled stacked microstrip antennas,' IEEE Trans. on Antennas Propagat., Vol. AP-39, No. 12, pp. 1770-1776, Dec., 1991 https://doi.org/10.1109/8.121599
  3. D. G. Shively and W. Stutzman, 'Wideband arrays with variable element sizes,' IEE Proceedings, Vol. 137, No. 4, pp. 238-240, 1990
  4. H. Nakano, Y. Shinma and J. Yahauchi, 'A mono-polar spiral antenna and its array above a ground plane-formation of a circularly polarized tilted fan beam,' IEEE Trans. on Antennas Propagat., Vol. 45, No. 10, pp. 1506-1511, 1997 https://doi.org/10.1109/8.633858
  5. P. Bhartia, K. V. S. Rao and R. S. Tomar, Millimeter-wave microstrip and printed circuit antennas, Artech House, 1991
  6. F. Zavosh and J. T. Aberle, 'Improving the performance of microstrip antennas,' IEEE AP Magazine, Vol. 38, No. 4, pp. 7-12, Aug., 1996 https://doi.org/10.1109/74.537361
  7. Karl S. Kunz, Raymond, J. Luebbers. The finite difference time domain method for electromagnetics. CRC Press. Inc, pp. 11-26, 1993
  8. A. Taflove and M. E. Brodwin, 'Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equation,' IEEE Trans. on Microwave Theory and Tech., Vol. MTT-23, No. 6, pp. 623-630, jun., 1975 https://doi.org/10.1109/TMTT.1975.1128640
  9. David M. Pozar, 1985, Antenna design using personal computers, Artech House, pp. 7-10
  10. H. Yagi, 'Beam transmission of ultra-short waves,' Proc., IRE, Vol. 16, p. 715, 1928
  11. C. A. Balanis, 1997, Antenna theory analysis and design, John Wiley
  12. Y. Qian and T. Itoh, 'A broadband uniplanar microstrip-to-CPS transition,' Asia-Pacific Microwave Conf. Dig., pp. 609-612, Dec. 1997 https://doi.org/10.1109/APMC.1997.654615
  13. N. O. Sadiku, Numerical techniques in electromagnetics, CRC Press, pp. 179-203, 1992
  14. G. Mur, 'Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic equation,' IEEE Trans., Electomag., Compat., EMC-23, No. 4, pp. 377-382, Nov., 1981 https://doi.org/10.1109/TEMC.1981.303970
  15. Luebbers, R. J., K.S. Kunz, M. Schneider, and F. Hunsberger, 'A finite-difference time-domain near zone to far zone transformation,' IEEE Trans and Propag., Vol. 39, pp. 429-433, 1991 https://doi.org/10.1109/8.81453
  16. S. Ramo, J. Whinnery, and T. Van Duze, Fields and waves in communication electronics, 2nd ed. New York: Wiley, 1984
  17. Allen Taflove, Computational electrodynamics the finite-difference time-domain method, Atrech House, pp. 217-224