Design of Transmission Lines with Arbitrary Reflection Responses Using Synthesis Method for Spatially Adaptive Source Distribution

공간적응형 소스 분포 합성법을 사용한 임의의 반사응답을 갖는 전송선로 설계

  • Park, Ui-Jun (Dept.of Electronics Engineering, Kumoh National Institute of Technology)
  • 박의준 (금오공과대학교 전자공학부)
  • Published : 2002.05.01

Abstract

In the synthesis of the current source distribution function of an array antenna with the arbitrary radiation pattern, the Woodward-Lawson sampling method has been mainly used for the synthesis of an even function lobe pattern. In this paper, the method is extended to the synthesis of the odd function pattern and then the optimum synthesis method for the nonlinear source distribution function is proposed. The proposed method is applied to the design of nonuniform transmission lines with arbitrary reflection responses. The both dispersive impedance profiles of single and coupled nonuniform lines with arbitrary reflection responses are directly synthesized by the sampled values of a reflected spectral pattern which is optimally shaped by a perturbation of its complex null positions, hence removing the conventional step-by-step segmentation process and global optimization routines. The control problem in the case that all of port impedances are identical is also solved. The generality of the proposed method is verified by a filter design with the controlled arbitrary passband

임의 복사패턴을 만족시키는 배열안테나 소스 전류분포 합성시 사용하는 Woodward-Lawson 샘플링법은 우함수형 복사패턴 합성에 주로 사용되어 왔다. 본 연구에서는 이를 확장하여 기함수형 패턴도 만족시키는 비선형 소스 분포함수의 최적합성법을 제시하고, 이를 임의의 반사특성을 갖는 단일 및 결합선로의 불균일 모드 임피던스 프로필 합성에 동시에 적용하였다. 이 최적합성법은 주파수영역 반사패턴에 내재된 복소null점의 최적 섭동에 기본을 두고 있다. 제어된 반사패턴의 표본값으로부터 분산특성을 갖는 임피던스 프로필이 직접 계산되므로서 기존외 불균일선로 합성법보다 매우 간단함을 보였다. 그리고 서로 다른 임피던스간의 정합을 위한 기존이 테이퍼선로 이론에 기초한 불균일선론 합성법들을 탈피하여, 서로 같은 임피던스간의 불균일선로 합성도 가능케하므로서 본 연구에서 제시한 방법은 일반성을 가진다. 임의 통과대역을 갖는 필터 설계에 적용, 분석하므로서 타당성을 보였다.

Keywords

References

  1. R. W. Klopfenstein, 'A transmission line taper of improved design,' Proc. I.R.E., Vol. 44, pp. 31-35, Jan. 1956 https://doi.org/10.1109/JRPROC.1956.274847
  2. G. Xiao, K. Yashiro, N. Guan and S. Ohkawa, 'A new numerical method for syntheis of arbitrarily terminated lossless nonuniform transmission lines,' IEEE Trans. Microwave Theory Tech., Vol. 49, No. 2, pp. 369-376, Feb. 2001 https://doi.org/10.1109/22.903099
  3. R. E. Collin, Foundations for microwave engineering, McGraw-Hill, 1966
  4. P. Pramanick and P. Bhartia, 'A generalized theory of tapered transmission line matching transformers and asymmetric couplers supporting non-TEM modes,' IEEE Trans. Microwave Theory Tech., Vol. 37, No. 3, pp. 1184-1191, Aug. 1989 https://doi.org/10.1109/22.31077
  5. M. Kobayashi and N. Sawada, 'Analysis and synthesis of tapered microstrip transmission lines,' IEEE Trans. Microwave Theory Tech., Vol. 40, No. 8, pp. 1642-1646, Aug. 1992 https://doi.org/10.1109/22.149542
  6. D. W. Kammler, 'The design of discrete N-section and continuously tapered symmetrical microwave TEM directional couplers,' IEEE Trans. Microwave Theory Tech., Vol. 17, No. 8, pp. 577-590, Aug. 1969 https://doi.org/10.1109/TMTT.1969.1127009
  7. S. Uysal, Nonuniform line microstrip directional couplers and filters. Artech House, 1993
  8. R. J. Mailloux, Phased array antenna handbook. Artech House, 1994
  9. T. T. Taylor, 'Design of line source antennas for narrow beamwidth and low side lobes,' I.R.E Trans. Antennas Propagat., Vol. AP-7, pp. 16-28, Jan. 1956
  10. D. M. Pozar, Microwave engineering. John Wiley & Sons, 1998
  11. M. Kirchning and R. H. Jansen, 'Accurate model for effective dielectric constant for microstrip with validity up to millimeter-wave frequencies,' Electron. Lett., Vol. 18, pp. 272-273, 1982 https://doi.org/10.1049/el:19820186
  12. M. Kirchning and R. H. Jansen, 'Accurate wide-range design equations for the frequency dependent characteristic of parallel coupled microstrip lines,' IEEE Trans. Microwave Theory Tech., Vol. MTT-32, pp. 83-90, Jan. 1984