(The Design of Parallel Ternary-Valued Multiplier Using Current Mode CMOS)

전류모드 CMOS를 사용한 병렬 3치 승산기 설계

  • Published : 2002.03.01

Abstract

In this paper, a new standard basis parallel ternary-valued multiplier circuit designed using current mode CMOS is presented. Prior to constructing the GF(3$^{m}$) multiplier circuit, we provide a GF(3) adder and a GF(3) multiplier with truth tables and symbolize them, and also design them using current mode CMOS circuit. Using the basic ternary operation concept, a ternary adder and a multiplier, we develop the equations to multiply arbitrary two elements over GF(3$^{m}$). Following these equations, we can design a multiplier generalized to GF(3$^{m}$). For the proposed circuit in this paper, we show the example in GF(3$^{3}$). In this paper, we assemble the operation blocks into a complete GF(3$^{m}$) multiplier. Therefore the proposed circuit is easy to generalize for m and advantageous for VLSI. Also, it need no memory element and the latency not less fewer than other circuit. We verify the proposed circuit by functional simulation and show its result.

본 논문에서는 전류모드 CMOS를 통한 GF(3/sup m/)상의 표준기저 승산회로를 제안하였다. 먼저, GF(3)연산을 위해 필요한 가산 및 승산을 진리표를 통해 정의하고 이를 CMOS회로로 설계하였다. GF(3/sup m/)상의 임의의 두 원소들간의 승산의 전개방식을 수식을 통해 보였으며, 정의된 3치 기본연산자를 조합하여 GF(3/sup m/) 승산회로를 설계하였다. 제안된 수식과 회로를 m에 대하여 일반화하였고, 그 중 m=3에 대한 설계의 예를 보였다. 본 논문에서 제안된 승산회로는 그 구성이 블록의 형태로 이루어지므로 m에 대한 확장이 용이하며, VLSI에 유리하다. 또한 회로내부에 메모리소자를 사용하지 않고, 연산디지트들이 병렬로 연산되므로 빠른 연산이 가능하다. 제안된 회로의 논리연산동작을 시뮬레이션을 통해 검증하였다.

Keywords

References

  1. B. A. Laws and C. K. Rushford, 'A Cellular-Array Multiplier for $GF(2^m)$' IEEE Trans. Comp., vol. C-20, no. 12, pp. 1573-1578, Dec. 1971 https://doi.org/10.1109/T-C.1971.223173
  2. C. S. Yeh, I. S. Reed, and T. K. Trung, 'Systolic multipliers for finite field $GF(2^m)$,' IEEE Trans. Computer, vol. C-33, p. 357-360, Apr. 1984 https://doi.org/10.1109/TC.1984.1676441
  3. J. Omura and J. Massey, 'Computational Method and Apparatus for Finite Fields,' U.S. Patent no. 4.587.627, May 1986
  4. C. C. Wang, T. K. Trung, H. M. Shao, L. J. Deutsch, J. K. Omura, and I. S. Reed., 'VLSI Architecture for Computing Multiplications and Inverses in $GF(2^m)$,' IEEE Trans. Comp., vol. C-34, pp. 709-717, Aug. 1985 https://doi.org/10.1109/TC.1985.1676616
  5. K. Z. Pekmestzi, 'Multiplexer-Based Array Multipliers,' IEEE Trans. Computer, vol. 48, no. 1, pp. 15-23, Jan. 1999 https://doi.org/10.1109/12.743408
  6. C. Y. Lee, E. H. Lu, and J. Y. Lee, 'Bit-Parallel Systolic Multipliers for $GF(2^m)$ Fields Defined by All-One and Equally Spaced Polynomials,' IEEE Trans. Comp., vol. 50, no. 5, pp. 385-393, May. 2001 https://doi.org/10.1109/12.926154
  7. E. R. Berlekamp, 'Bit-Serial Reed-Solomon Encoders,' IEEE Trans. Information Theory, vol. 28, pp. 869-874, Nov. 1982 https://doi.org/10.1109/TIT.1982.1056591
  8. S. T. J. Fenn, M. Benaissa, and D. Taylor, '$GF(2^m)$ Multiplication and Division Over the Dual Basis,' IEEE Trans. Comp., vol. 45, no. 3, pp. 37-46, Jan. 1982
  9. I. S. Hsu, T. K. Troung, L. J. Deutsch, and I. S. Reed, 'A Comparision of VLSI Architecture of Multipliers using Dual, Normal, or Standard Bases,' IEEE Trans. Computer, vol. C-37, pp. 735-739, 1988 https://doi.org/10.1109/12.2212
  10. E. D. Mastrovito, 'VLSI Design for Multiplication over Finite Fields,' LNCS-357, Proc. AAECC-6, pp. 297-309, Rome, July 1988, Spring-Verlag
  11. G. L. Feng, 'A VLSI Architecture for Fast Inversion in $GF(2^m)$,' IEEE Trans. Computer, vol. 38, no. 10, Oct. 1989 https://doi.org/10.1109/12.35833
  12. C. K. Koc, and B. Sunar, 'Low-Complexity Bit Parallel Canonical and Normal Basis Multipliers for a Class of Finite Fields,' IEEE Trans. Computer, vol. 47, no. 3, pp. 353-356, Mar. 1998 https://doi.org/10.1109/12.660172
  13. J. T. Butler, 'Multiple-valued logic : guest editor's introduction and bibliography,' IEEE Computer, Mag., vol. 21, pp. 13-15, Apr. 1988 https://doi.org/10.1109/2.14344
  14. J. C. Muzio, 'Introduction multiple-valued logic,' IEEE Trans. Computer, vol. 35, pp. 97-98, Feb. 1986 https://doi.org/10.1109/TC.1986.1676726
  15. Y. Hata, N. Kamiura and K. Yamato, 'Design of Multiple-Valued Programmable Logic Array with Unary Function Generators,' IEICE Trans. INF. & SYST., vol. E82-D, no. 9, pp. 1254-1260, Sep. 1999
  16. N. Kamiura, Y. Hata and K. Yamato, 'Design of a Multiple-Valued Cellular Array,' IEICE Trans. Electron., vol. E76-C, no. 3, pp. 412-418, Mar. 1993
  17. T. Hanyu, S. Kazama, M. Kameyama, 'Design and implementation of a Low-Power Multipl-Valued Current Mode Integrated Circuit with Current-Souce Control,' IEICE Trans. Electron, vol. E80-C, no. 7, pp. 941-947, July 1997
  18. A. Gill, Linear Sequential Circuits, McGraw-Hill Book Co., Newyork, 1966
  19. H. Anton, Elementary Linear Algebra, John Wiley & Sons, Inc., Newyork, 1994
  20. E. Kreyszig, Advanced Engineering Mathematics 8/e, John Wiley & Sons, Inc., Newyork, 1999