Abstract
Myocardial ischemia is a disorder of cardiac function caused by insuficient blood flow to the muscle tissue of the heart. We can diagnose myocardial ischemia by observing the change of ST-segment, but this change is temporary. Our primary purpose is to detect the temporary change of the 57-segment automatically In the signal processing, the wavelet transform decomposes the ECG(electrocardiogram) signal into high and low frequency components using wavelet function. Recomposing the high frequency bands including QRS complex, we can detect QRS complex more easily. Amplitude comparison method is adopted to detect QRS complex. Reducing the effect of noise to the minimum, we grouped ECG by 5 data and compared the amplitude of maximum value. To recognize the ECG .signal pattern, we adopted the polynomial approximation partially and statistical method. The polynomial approximation makes possible to compare some ECG signal with different frequency and sampling period. The ECG signal is divided into small parts based on QRS complex, and then, each part is approximated to the polynomials. After removing the distorted ECG by calculating the difference between the orignal ECG and the approximated ECG for polynomial, we compared the approximated ECG pattern with the database, and we detected and classified abnormality of ECG.