Oxygen Transport in Axisymmetric Thrombosed Aneurysm

혈전이 있는 축대칭 동맥류에서의 산소전달현상

  • 김한일 (연세대학교 의공학과, 의공학연구소, 의용계측 및 재활공학 연구센터, 첨단의료기기 기술혁신센터) ;
  • 태기식 (연세대학교 의공학과, 의공학연구소, 의용계측 및 재활공학 연구센터, 첨단의료기기 기술혁신센터) ;
  • 김영호 (연세대학교 의공학과, 의공학연구소, 의용계측 및 재활공학 연구센터, 첨단의료기기 기술혁신센터)
  • Published : 2002.08.01

Abstract

Localized hypoxia, due to the diminished $O_2$supply, is reported to cause necrosis of the arterial cell and to significantly decrease resistances to physiologic distending pressures. In the present study, in order to understand the mechanism of localized hypoxia which might result in the rupture of the aneurysm. $O_2$ transport phenomena across intraluminal thrombus in axisymmetric aneurysms under steady laminar flow condition were numerically analyzed using the Fick's law and the analogy with the fluid-solid heat transfer. For computational models, varying the thickness of intraluminal thrombus, numerical results showed that for the axisymmetric aneurysm with intraluminal thrombus. $O_2$ concentration became minimal at the aneurysm wall. With increased thickness of the intraluminal thrombus in the aneurysm. regions of low $O_2$ concentration were widely distributed near the aneurysm wall, which resulted in the possibility of localized hypoxia. The present study verifis that intraluminal thrombus influences $O_2$ transport to the aneurysm wall. depending on its size and structure.

국부적 저산소증(localized hypoxia)은 산소공급의 저하로 인하여 조직세포를 파괴하고 관강압력에 대한 동맥류 벽의 저항을 현저하게 감소시킨다고 보고되고 있다. 본 연구에서는 동맥류 파열의 원인이 되는 저산소증의 기전을 이해하기 위하여 혈전의 두께에 따라 세 가지의 축대칭 동맥류 모델을 구성하여 동맥류 내 혈전을 통한 정상 층류유동 (steady laminar flow)에서의 산소전달현상(O$_2$transport phenomenon)을 유체-고체 열전달 현상과의 유사성을 이용하고 Fick의 법칙을 적용하여 해석하였다. 전산해석을 통해서 혈전이 형성된 혈관에서 산소농도는 혈관 벽에서 가장 낮게 나타났으며 혈전의 크기가 증가할수록 저산소농도(low $O_2$concentration) 영역이 혈관 벽 가까이 넓게 분포되어 저산소증의 가능성이 증가됨을 알 수 있었다 본 연구를 통해서 동맥류 내의 혈전은 구조와 크기에 따라 산소의 흐름에 주요한 영향을 미침을 확인할 수 있었다.

Keywords

References

  1. J. Biomech Eng. v.118 no.3 Steady flow in an aneurysm model: correlation between fluid dynamics and blood platelet deposition D. Bluestein;L. Niu;R.T. Schoephoerster;M.K. Dewanjee https://doi.org/10.1115/1.2796008
  2. Scientific American v.247 Aneurysms K.H. Johansen
  3. American J Surg v.119 Ruptured arteriosclerotic abdominal aortic aneurysms: a phthologic and clinical study R.C. Darling https://doi.org/10.1016/0002-9610(70)90140-6
  4. Surgery v.80 Growth rates of small abdominal aortic aneurysms E.F. Bernstein;R.B. Dilley;L.E. Goldberger;B.B. Gosink;G.R. Leopold
  5. Eur J Vase Endovasc Surg v.18 Abdominal aortic aneurysm wall mechanics and their relation to risk of rupture B. Sonesson;T. Sandgren;T. Lanne https://doi.org/10.1053/ejvs.1999.0872
  6. J. Vasc Surg v.27 Mechanical wall stress in abdominal aortic aneurysm:Influence of diameter and asymmetry D.A. Vorp;M.L. Raghavan;M.W. Webster https://doi.org/10.1016/S0741-5214(98)70227-7
  7. Neurosurgery v.45 no.1 Effects of size and shape(aspect ratio) on the hemodynamics of saccular aneurysms: a possible index for surgical treatment of intracranial aneurysms U. Hiroshi;H. Tachibana;O. Hiramatsu;A.L. Hazel;T. Matsumoto;Y. Ogasawara;H. Nakajima;T. Hori;K. Takakura;F. Kajiya https://doi.org/10.1097/00006123-199907000-00028
  8. J. Vasc Surg v.20 no.4 CT scan findigns associated with rapid expansion of abdominal aortic aneurysm Y.G. Wolf;W.S. Thomas;F.J. Brennan;W.G. Goff;M.J. Sise;E.F. Bernstein https://doi.org/10.1016/0741-5214(94)90277-1
  9. Biorheology v.24 Visualization and finite element analysis of pulsatile flow in models of the abdominal aortic aneurysm T. Fukushima;Y. Matsuzawa;T. Homma
  10. J. Biomech Eng. v.115 Steady flow in abdominal aortic aneurysm models R. Budwig;D. Elger;H. Hooper;J. Slippy https://doi.org/10.1115/1.2895506
  11. Annals of Biomed Eng. v.23 no.1 Experimental investigation of steady flow in rigid models of abdominal aortic aneurysms C.L. Asbury;J.W. Ruberti;E.I. Bluth;R.A. Peattie https://doi.org/10.1007/BF02368298
  12. Int J Heat and Fluid Flow v.21 Steady and pulsatile flow studies in abdominal aortic aneurysm models using particle image velocimetry S.C.M. Yu https://doi.org/10.1016/S0142-727X(99)00058-2
  13. Cardiovasc Surg v.4 no.6 Potential influence of intraluminal thrombus on abdominal aortic aneurysm as assessed by a new non-invasive method D.A. Vorp;W.A. Mandarino;M.W. Webster;J. Gorcsan https://doi.org/10.1016/S0967-2109(96)00008-7
  14. Eur J Vasc Endovasc Surg v.20 Growth of thrombus may be a better predictor of rupture than diameter in patients with abdominal aortic aneurysms J. Stenbaek;B. Kalin;J. Swedenberg https://doi.org/10.1053/ejvs.2000.1217
  15. Nippon Acea Radiologica v.51 no.3 CT of abdominal aortic aneurysms: aneurysmal size and thickness of intra-aneurysmal thrombus as risk factors of rupture T. Kushihashi;H. Munechika;S. Matsui;T. Moritani;Y. Horichi;T. Hishida
  16. Eur J Vasc Surg v.7 no.3 Biomechanical factors in abdominal aortic aneurysm rupture F. Inzoli;F. Boschetti;M. Zappa;T. Longo;R. Fumero https://doi.org/10.1016/S0950-821X(05)80714-5
  17. J Vasc Surg v.34 no.2 Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening D.A. Vorp;P.C. Lee;D.H.J. Wang;M.S. Makaroun https://doi.org/10.1067/mva.2001.114813
  18. J Biomech Eng v.120 Effect of intraluminal thrombus thickness and bulge diameter on the oxygen diffusion in abdominal aortic aneurysm D.A. Vorp;D.H.J. Wang;M.W. Webster;W.J. Federspiel https://doi.org/10.1115/1.2834747
  19. J Vasc Surg v.1 Role of medial lamellar architecture in the pathogenesis of aortic aneurysms M.A. Zatina;C.K. Zarins;B.L. Gewertz;S. Glagov https://doi.org/10.1067/mva.1984.avs0010442
  20. Cell Tiss Res v.170 Structural changes in smooth muscle cells during isotonic contraction G. Gabella
  21. Med Eng Phys v.19 no.4 On the abdominal aortic aneurysms: pulsatile state sonsiderations N. Viswanath;C.M. Rodkiewicz;S. Zajac https://doi.org/10.1016/S1350-4533(96)00064-1
  22. CFD-ACE Tutorials v.Ⅰ