Performance Bounds for MMSE Linear Macrodiversity Combining in Rayleigh Fading, Additive Interference Channels

  • Smith, Peter J. (Department of Electrical and Computer Engineering, University of Canterbury) ;
  • Gao, Hongsheng (Datamine Ltd.) ;
  • Clark, Martin V. (Mathworks Inc.)
  • Published : 2002.06.01

Abstract

The theoretical performance of MMSE linear microdiversity combining in Rayleigh fading, additive interference channels has already been derived exactly in the literature. In the macrodiversity case the fundamental difference is that any given source may well have different average received powers at the different antennas. This makes an exact analysis more difficult and hence for the macrodiversity case we derive a bound on the mean BER and a semi-analytic upper bound on outage probabilities. Hence we provide bounds on the performance of MMSE linear microdiversity combining in Rayleigh fading with additive noise and any number of interferers with arbitrary powers.

Keywords

References

  1. P. Balaban and J. Salz, 'Optimum diversity combining and equalization in digital data transmission with applications to cellular mobile radio - Part I: Theoretical considerations,' IEEE Trans. Commun., vol. COM-40, pp.885-894, May 1992
  2. M. V. Clark et al., 'MMSE diversity combining for wide-band digital cel-lular radio,' IEEE Trans. Commun., vol. COM-40, pp. 1128-1135, June 1992
  3. M. V. Clark et al., 'Optimum linear diversity receivers for mobile communications,' IEEE Trans. Veh. Technol., vol. VT-43, pp. 47-56, Feb. 1994
  4. H. Gao, P. J. Smith, and M. V. Clark, 'Theoretical reliability of MMSE linear diversity combining in Rayleigh fading, additive interference channels,' IEEE Trans. Commun., vol. COM-46, no. 5, pp. 666-672,1998
  5. W. C. Jakes et al., Microwave Mobite Communications, Wiley, New York, 1974
  6. M. Jerrum and A. Sinclair, 'Approximating the permanent,' SIAM J. Comput., vol. 18, pp. 1149-1178,1989 https://doi.org/10.1137/0218077
  7. N. Karmarkar et al., 'A monte carlo algorithm for esdmating the perma-nent,' SIAM J. Comput., vol. 22, pp. 284-293,1993 https://doi.org/10.1137/0222021
  8. H. Minc, Permanents, Addison-Wesley, Reading, MA, 1978.
  9. J. G. Proakis, Disital Communications, McGraw-Hill, 2nd Ed., 1989.
  10. L. E. Rasmussen, 'Approximating the permanent: A simple approach,' Random Structures and Atgorithms, vol. 5, pp. 349-361, 1994 https://doi.org/10.1002/rsa.3240050208
  11. P. J. Smith and H. Gao, 'The polynomial ratio distribution,' submitted to J. Multivariate Analysis
  12. L. G. Valiant, 'The complexity of computing the permanent,' Theor. Comput. Sci., vol. 8, pp. 189-201, 1979 https://doi.org/10.1016/0304-3975(79)90044-6
  13. J. H. Winters, 'Optimum combining in digital mobile radio with co-channel interference,' IEEE J. Setect. Areas in Commun., vol. SAC-2, pp.528-539, July 1984
  14. J. H. Winters, 'On the capacity of radio communication systems with diversity in a Rayleigh fading environment,' IEEE J. Select. Areas in Commun., vol. SAC-5, pp. 871-878, June 1987
  15. J. H. Winters, 'Optimum combining for indoor radio systems with multiple users,' IEEE Trans. Commun., vol. COM-35, Nov. 1987
  16. J. H. Winters, J. Salz, and R. D. Gitlin, 'The impact of antenna diversity on the capacity of wireless communication systems,' IEEE Trans. Commun., vol. COM-42, pp. 1740-1751
  17. J. H. Winters and J. Salz, 'Upper bounds on the bit error rate of optimum combining in wireless systems,' in Proc. IEEE Veh. Technol. Conf., June 1994
  18. A. Frieze and M. Jerrum, 'An analysis of a monte carlo algorithm for estimating the permanent,' Combinatorica, vol. 15, pp. 67-83, 1995 https://doi.org/10.1007/BF01294460
  19. H. Gao and P. J. Smith, 'Exact SINR calculadons for optimum linear combining in wireless systems,' PEIS, vol. 12, pp. 261-281, 1998
  20. M. Abramowitz and I. Stegun (eds), Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, National Bureau of Standards, U.S. Government Printing Office, Washington, D.C., 1972
  21. R. B. Davies, 'The distribution of a linear combination of $\chi^2$ random variables,' Applied Statistics, Algorithm AS155, pp. 323-333, 1980 https://doi.org/10.2307/2346911