Functional Analyses and Application of Microbial Lactonohydrolases

  • Shimizu, Sakayu (Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University) ;
  • Honda, Kohsuke (Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University) ;
  • Kataoka, Michihiko (Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University)
  • 발행 : 2002.05.01

초록

Microbial lactonohydrolases (intramolecular ester bond-hydrolyzing enzymes) with unique properties were found. The lactonohydrolase from Fusarium oxysporum catalyzes enantiose-lective hydrolysis of aldonate lactones and D-pantoyl lactone (D-PL). This enzyme is useful for the large-scale optical resolution of racemic PL. The Agrobacterium tumefaciens enzyme catalyzes asymmetric hydrolysis of PL, but the stereospecificity is opposite to that of the Fusarium enzyme. Dihydrocoumarin hydrolase (DHase) from Acinetobacter calcoaceticus is a bifunctional enzyme, which catalyzes not only hydrolysis of aromatic lactones but also bromination of monochlorodi-medon in the presence of H$_2$O$_2$and dihydrocoumarin. DHase also hydrolyzes several linear esters, and is useful for enantioselective hydrolysis of methyl DL-$\beta$-acetylthioisobutyrate and regioselective hydrolysis of methyl cetraxate.

키워드

참고문헌

  1. Biochim. Biophys. Acta v.47 The role of aldonolactonase in the conversion of L-gulonate to L-ascorbate Bulitz, C.;A. Lehninger https://doi.org/10.1016/0006-3002(61)90289-X
  2. Pullularia pullulans. Can. J. Microbiol v.31 Oxidative pathway for L-rhamnose degradation in Rigo, L. U.;L. R.;Marechal;M. M. Vieira;L. A. Veiga https://doi.org/10.1139/m85-153
  3. Pseudomonas fragi. Appl. Microbiol. Biotechnol v.27 The role of xylonolactone in xylonic acid production Buchert, J.;L. Viikari
  4. Pseudomonas saccharophila. J. Biol. Chem. v.217 The oxidation of L-arabinose Weimberg, R.;M. Doudoroff
  5. Pseudomonas saccharophila. J. Bacteriol v.74 Metabolism of carbohydrates Palleroni, N. J.;M. Doudorof
  6. J. Biol. Chem. v.233 Aldono-and uronolactonases of animal tissues Winkelman, J.;A. L. Lehninger
  7. J. Biochem. v.46 Studies on glucuronolactonase and gulonolactonase Yamada, K. https://doi.org/10.1093/jb/46.3.361
  8. Biochim. Biophys. Acta v.32 On the microsomal and soluble lactonases Yamada, K.;S. Ishikawa;N. Shimazono https://doi.org/10.1016/0006-3002(59)90576-1
  9. J. Biochem. v.51 Comparative studies on soluble lactonases Kawada, M.;H. Takiguchi;Y. Kagawa;K. Suzuki;N. Shimazono https://doi.org/10.1093/oxfordjournals.jbchem.a127554
  10. J. Biol. Chem. v.237 The metabolism of aromatic compounds in higher plants Kosuge, T.;E. E. Conn
  11. J. Biol. Chem. v.241 Purification and properties of an enzyme in human blood and rat liver microsomes catalyzing the formation and hydrolysis of r-lactones Fishbein, W. N.;S. P. Bessman
  12. Escherichia coli. Biochim. Biophys. Acta v.276 Glucono-8-lactone Hucho, F.;K. Wallenfels https://doi.org/10.1016/0005-2744(72)90018-6
  13. J. Molec. Catalysis B: Enzymatic 3 Microbial lipases in the biocatalysis Ortaggi, G.;K.-E. Jaeger(eds.)
  14. J. Molec. Catalysis B: Enzymatic 5. Proceedings of the 3rd International Symposium on Biocatalysis and Biotransformations Azerad, R.(ed.)
  15. Stereoselective biocatalysis. Patel, R. N.(ed.)
  16. Appl. Microbiol. Biorechnol v.43 Optical resolution of racemic pantolactone with a novel fungal enzyme, lactonohydrolase Kataoka, M.;K. Shimizu;K. Sakamoto;H. Yamada;S. Shimizu https://doi.org/10.1007/BF00166911
  17. Appl. Microbiol. Biotechnol. v.44 Lactonohydrolase-catalyaed optical resolution of pantoyl lactone: selection of a potent producer and optimization of culture and reaction conditions for practical resolution Kataoka, M.;K. Shimizu;K. Sakamoto;H. Yamada;S. Shimizu https://doi.org/10.1007/BF00169925
  18. Agrobacterium tumefaciens. Biosci. Biotechnol. Biochem. v.64 Purification and characterization of a novel lactonohydrolase Kataoka, M.;J. Nomura;K. Nose;M. Shinohara;S. Shimizu https://doi.org/10.1271/bbb.64.1255
  19. Fusatium oxysporum. Purification and characterizetion. Eur. J. Biochem v.209 Purification and characterization of a novel lactonohydrolase, catalyzing the hydrolysis of aldonate lactones and aromatic lactones Shimizu, S.;M. Kataoka;K. Shimizu;M. Hirakata;K. Sakamoto;H. Yamada
  20. Proc. Natl. Acad. Sci. v.95 Lactone-ring-cleaving enzyme: genetic analysis, RNA edting, and evolutionary implications Kobayashi, M.;M. Shinohara;C. Sakoh;M. Kataoka;S. Shimizu https://doi.org/10.1073/pnas.95.22.12787
  21. Zymomonas mobilis. Biochim. Biophys. Acta v.1171 Isolation and characterization of the gene encoding gluconolactonase Kanagasundaram, V.;R. Scopes https://doi.org/10.1016/0167-4781(92)90120-O
  22. Biochemistry v.30 Characterization of cDNA clones encoding rabbit and human serum paraoxonase: the mature protein retains its signal sequence Hassett, C.;R. J. Richter;R. Humbert;C. Chapline;J. W. Crabb;C. J. Omiecinski;C. E. Furlong https://doi.org/10.1021/bi00106a010
  23. Drug Metab. Dispos. v.28 Human serum paraoxonase (PON1) isozymes Q and R hydrolyze lactones and cyclic carbonate esters Billecke, S.;D. Draganov;R. Counsell;P. Stetson;C. Watson;C. Hsu;B. N. La Du
  24. J. Biol. Chem. v.275 Rabbit serum paraoxonase 3 (PON3) is a high density lipoprotein-associated lactonase and protects low density lipoprotein against oxidation Draganov, D. I.;P. L. Stetson;C. E. Watson;S. S. Billecke;B. N. La Du https://doi.org/10.1074/jbc.M004543200
  25. J. Bacteriol. v.180 The Streptomyces peucetius dpsY and dnrX genes govern early and late steps of daunorubicin and doxorubicin biosynthesis Lomovdkaya, N.;Y. Doi-Katayam;S. Filippini;C. Nastro;L. Fonstein;M. Gallo;A. L. Colombo;C. R. Hutchinson
  26. Streptomyces argillaceus. Mol. Gen. Genet. v.261 Analysis of two chromosomal regions adjacent to genes for a type II polyketide synthase involved in the biosynthesis of the antitumor polyketide mithramycin Prado, L.;F. Lombo;A. F. Brana;C. Mendez;J. Rohr;J.A. Salas https://doi.org/10.1007/s004380050960
  27. Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis, and Bioseparation Pantothenic acid and related compounds Shimizu, S.;M. Kataoka;M. C. Flickinger(ed.);S. W. Drew(ed.)
  28. Biotechnology, v.10 Vitamins and related compounds: microbial production Shimizu, S.;G. Reed(ed.);H.-J. Rehm (ed.)
  29. Enzyme Microb. Technol. v.19 Optical resolution of racemic pantoic acid through microbial stereoselective lactonization in an organic solvent/water two-phase system Kataoka, M.;M. Hirakata;K. Sakamoto;H. Yamada;S. Shimizu https://doi.org/10.1016/0141-0229(95)00250-2
  30. Enzyme Microb. Technol. v.10 Microbial resolution of O-acetyl pantoyl lactone Glanzer, B. I.;K. Faber;H. Griengl https://doi.org/10.1016/0141-0229(88)90062-2
  31. Biotechnol. Lett. v.11 Lipase catalysis in organic solvents; transesterification of O-formyl esters of secondary alcohols Bevinakatti, H. S.;R. V. Newadkar https://doi.org/10.1007/BF01026097
  32. Acinetobacter calcoaceticus F46. Eur. J. Biochem. 3,4-Dihydrocoumarin hydrolase with haloperoxidase acitvity Kataoka, M.;K. Honda;S. Shimizu
  33. Pseudomonas fluorescens and expression of the gene in Escherichia coli. Agric. Biol. Chem. v.54 Cloning and nucleotide sequence of an esterase gene Choi, K. D.;G. H. Jeohn;J. S. Rhee;O. J. Yoo
  34. Pseudomonas putida MR-2068. Biosci. Biotechnol. Biochem. v.59 Nucleotide sequence of the gene for a thermostable esterase Ozaki, E.;A. Sakimae;R. Numazawa https://doi.org/10.1271/bbb.59.1204
  35. Pseudomonas fluorescens with high activity towards lactones. Appl. Environ. Microbiol. v.65 Screening, nucleotide sequence, and biological characterization of an esterase Khalameyzer, V.;I. Fischer;U. T. Bornscheuer;J. Altenbuchner
  36. Streptomyces aureofaciens ATCC 10762. J. Gen. Microbiol. v.138 Molecular cloning and sequencing of a non-heam bromoperoxidase gene Pfeifer, O.;I. Pelletier;J. Altenbuchner;K.-H. van Pee
  37. J. Bacteriol. v.176 Chloroperoxidase from Streptomyces lividans: Isolation and characterization of the enzyme and the corresponding gene Bantleon, R.;J. Altenbuchner;K.-H. van Pee https://doi.org/10.1128/jb.176.8.2339-2347.1994
  38. Microbiology v.140 Cloning of a second non-haem bromoperoxidase gene from Streptomyces sureofaciens ATCC 10762: Sequence analysis, expression in Streptomyces lividens and enzyme purification Pelletier, I.;O. Pfeifer;J. Altenbuchner;K.-H. van Pee https://doi.org/10.1099/00221287-140-3-509
  39. Gene v.130 Chloroperoxidase-encoding gene from Pseudomonas pyrrocinica: Sequence, expression in heterologous hosts, and purification of the enzyme Wolffram, C.;F. Lingens;R. Mutzel;K.-H. van Pee https://doi.org/10.1016/0378-1119(93)90356-8
  40. Appl. Environ. Microbiol. v.63 Thiocarbamate herbicide-inducible nonheme haloperoxidase of Rhodococcus erythropolis NI86/21. De Schrijver, A.;I. Nagy;G. Schoofs;P. Proost;J. Vanderleyden;K.-H. van Pee;R. De Mot
  41. The α/β hydrolase fold. Protein Eng. v.5 Ollis, D. L.;E. Cheah;M. Cygler;B. Dijkstra;E. Frolow;S. M. Franken;M. Harel;S. J. Remington;I. Silman;J. Schrag;J. L. Sussman;K. H. G. Verschueren;A. Goldman
  42. Annu. Rev. Microbiol. v.50 Biosynthesis of halogenated metabolites by bacteria van Pee, K.-H. https://doi.org/10.1146/annurev.micro.50.1.375
  43. Microbiology v.141 A bacterial esterase is homologous with non-haem haloperoxidases and displays brominating activity Pelletier, I.;J. Altenbuchner https://doi.org/10.1099/13500872-141-2-459
  44. Angew. Chem. Int. Ed. Engl. v.36 NADH-dependent halogenases are more likely to be involved in halometabolite biosynthesis than haloperoxidases Hohaus, K.;A. Altmannm;W. Burd;I. Fischer;P. E. Hammer;D. S. Hill;J. M. Ligon;K.-H. van Pee https://doi.org/10.1002/anie.199720121
  45. Angew. Chem. Int. Ed. Engl. v.38 Metal-free haloperoxidases: Fact or artifact? Kirk, O.;L. S. Conrad https://doi.org/10.1002/(SICI)1521-3773(19990401)38:7<977::AID-ANIE977>3.0.CO;2-8
  46. J. Med. Chem. v.24 Inhibition of the renin-angiotensin system: A new approach to the therapy of hypertension Ondetti, M. A.;D. W. Cushman https://doi.org/10.1021/jm00136a001
  47. Biosci. Biotechnol. Biochem. v.56 Screening of microorganisms producing D-β-acetylthioisobutyric acid from methyl DL-β-acetylthioisobutyrate Sakimae, A.;A. Hosoi;E. Kobayashi;N. Ohsuga;R. Numazawa;I. Watanabe;H. Ohnishi https://doi.org/10.1271/bbb.56.1252
  48. Biosci. Biotechnol. Biochem. v.57 Process conditions for the production of D-β-acetylthioisobutyric acid from methyl DL-β-acetylthioisobutyrate with the cells of Pseudomonas putida MR-2068 Sakimae, A.;E. Ozaki;H. Toyama;N. Ohsuga;R. Numazawa;I. Muraoka;E. Hamada;H. Ohnishi https://doi.org/10.1271/bbb.57.782
  49. Chem. Pharm. Bull. v.30 Synthesis of captopril starting from an optically active β-hydroxy acid Shimazaki, M.;J. Hasegawa;K. Kan;K. Nomura;Y. Nose;H. Kondo;T. Ohashi;K. Watanabe https://doi.org/10.1248/cpb.30.3139
  50. Dihydrocoumarin hydrolase from Acinetobacter calcoaceticus F46 Functional analysis and applications. Abstracts of the 5th International Symposium of Biocatalysis and Biotransformation Kataoka, M.;K. Honda;S. Shimizu
  51. Chem. Pharm. Bull. v.37 Partial purification, and some properties and reactivites of cetraxate benzyl ester hydrochloride-hydrolyzing enzyme. Kuroda, H.;A. Miyadera;A. Imura;A. Suzuki https://doi.org/10.1248/cpb.37.2929
  52. W. FEMS Microbiol. Lett. v.206 Purification and characterization of a novel esterase promising for the production of useful compounds from Microbacterium sp. 7-1 Honda, K.;M. Kataoka;H. Ono;K. Sakamoto;S. Kita;S. Shimizu https://doi.org/10.1111/j.1574-6968.2002.tb11013.x