Medium Optimization for Phytase Production by Recombinant Escherichia coli Using Statistical Experimental Design

  • Choi, Won-Chan (Microbial Genomics Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Oh, Byng-Chul (Microbial Genomics Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Hyung-Kwoun (Microbial Genomics Laboratory, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Eun-Sook (Department of Preparatory Oriental Medicine, Kyungsan University)
  • Published : 2002.06.01

Abstract

The production of E. coli WC7 phytase from a recombinant E. coli strain was optimized using a statistical experimental design approach. Two-level complete factorial designs with seven variables were used for the media optimization. In the first optimization step, the influence of disodium succinate, yeast extract, $K_2HPO_4,\;NH_4H_2PO_4,\;MgSO_4$, NaCl, and trace elements on phytase production was evaluated. As a result, disodium succinate, yeast extract, $NH_4H_2PO_4$, NaCl, and the trace elements were found to have a positive influence on the phytase production, while $K_2HPO_4\;and\;MgSO_4$ had a negative influence. In the second step, the concentrations of disodium succinate and yeast extract were further optimized using central composite designs. The maximum phytase activity obtained was 234 U/ml using 15.9 g/1 disodium succinate, 20 g/1 yeast extract, 5 g/1 K_2HPO_4,\;10 g/1 NH_4H_2PO_4,\;1.5 g/1 MgSO_4$, 4 g/1 NaCl, and 1.5 m1/1 trace elements, which was about a 14-fold increase in comparison with that obtained using the basal medium.

Keywords

References

  1. Statistics for Experimenters Box, G. E. O.;W. G. Hunter;J. S. Hunter
  2. Kor. J. Microbiol. Biotechnol. v.30 Characterization and cloning of a phytase from Escherichia coli WC7 Choi, W. C.;B. C. Oh;H. K. Kim;S. C. Kang;T. K. Oh
  3. Experimental Designs, 2nd edition Cochran, W. G.;G. M. Cox
  4. Aust. J. Biol. Sci. v.23 Inositol phosphate phosphatases of microbiological origin. Inositol phosphate intermediates in the dephosphorylation of the hexaphosphates of myoinositol, scyllo-inositol, and D-chiro-inositol by a bacterial (Pseudomonas sp.) phytase Cosgrove, D. J.
  5. J. AOAC Int. v.77 Simple and rapid determination of phytase activity Engelen, A. J. F. C. Heeft
  6. Biotechnol. Bioeng. v.64 Application of factorial designs for optimization of cyclodextrin glycosyltransferaseproduction from Kleviella pneumoniae AS-22 Gawande, B. N.;A. Y. Patkar https://doi.org/10.1002/(SICI)1097-0290(19990720)64:2<168::AID-BIT5>3.0.CO;2-5
  7. Biotechnol. Lett. v.9 Production of extracellular phytase from Aspergillus ficuum on starch media Gibson, D. https://doi.org/10.1007/BF01025793
  8. Phytic acid: Chemistry and Applications Chemistry and application of phytic acid; An overview Graf, E
  9. Biochim. Biophys. Acta v.132 The hydropysis of inositol phositol phosphates by Aerobacter aerogenes Greaves, M. P.;G. Anderson;D. M. Webley https://doi.org/10.1016/0005-2744(67)90160-X
  10. Arch. Biochem. Biophys. v.303 Purification and characterization of two phytases from Escherichia coli Greiner, R;U. Konietzny;K. D. Jany https://doi.org/10.1006/abbi.1993.1261
  11. J. Microbiol. Biotechnol. v.8 Taguchi's robust design method for optimization of lysophosphatidic acid production in an open reactor system Han, J. J.;J. S. Rhee
  12. Enzym. Microb. Technol. v.22 Purification and properties of a thermostable phytase from Bacillus sp. DS11 Kim, Y. O.;H. K. Kim https://doi.org/10.1016/S0141-0229(97)00096-3
  13. J. Microbiol. Biotechnol. v.4 optimization of fed-batch fermentation for prodution of poly-β-hydroxydutyrate in Alcalgenes eutrophus Lee, I.Y.;Y. C. Shin;H. N. Chang;Y. H. Park;E. S. Choi;G. J. Kim;S. W. Nam
  14. J. Microbiol. Biotechnol. v.3 Optimization of an Intact cell system of Rhodocyclus gelatinosus KUP - 74 for δ-aminolevulinic acid production Lim, W. J.;K. M. Choi;S. Y. Hwang
  15. J. Microbiol. Biotechnol. v.1 Optimization of producing liquid fuel from photosynthetic algal growth Pak, J. H. S. Y. Lee;W. C. Shin;H. Y. Lee
  16. J. Bacteriol. v.151 Purification and properties of phytate-specific phosphatase from Bacillus subtilis Power, V. K;V. Jagannathan
  17. J. Biotechnol. v.88 Optimization of astaxanthin production by Phaffia rhodozyma through factorial design and sesponse surface methodology Ramirez, J. H. Gutierrez;A. Gschaedler https://doi.org/10.1016/S0168-1656(01)00279-6
  18. Appl. Microbiol. v.16 Survey of microorganism for the production of extracellular pytase Shieh, T. R.;J. H. Ware
  19. Biosci. Biotechnol. Biochem. v.56 Purification and characterization of phytase from Bacillus subtilis(natto) N-77 Shimizu, M. https://doi.org/10.1271/bbb.56.1266
  20. Adv. Appl. Microbiol. v.42 Phytase Wodzinski, R. J.;A. H. Ullah https://doi.org/10.1016/S0065-2164(08)70375-7
  21. Agric. Biol. Chem. v.32 Phytase from Aspergillus terreus;Production, Purification, and some general properties of the enzyme Yamada, K.;Y. Minoda;K. Yamada https://doi.org/10.1271/bbb1961.32.1275
  22. J. Biotechnol. v.23 Optimization of a cultuvation process for recombinant protein production by Escherichia coli Yang, X. M. https://doi.org/10.1016/0168-1656(92)90075-K
  23. Enzyme Microb. Technol. v.101 Isolation and identification of phytase-producing bacterium, Enterobacter sp. 4, and enzymatic properties of phytase enzyme Yoon, S. J.;Y. J. Choi
  24. Biosci. Biotechnol. Biochem. v.62 Optimization for beta-mannanase production of a psychrophilic bacterium, Flavobacterium sp. Zakaria, M. M.;M. Ashiuchi;S. Yamamoto;T. Yagi https://doi.org/10.1271/bbb.62.655