• Title/Summary/Keyword: Phytase production

Search Result 107, Processing Time 0.023 seconds

Effect of Supplemental Microbial Phytase and Nonphytate Phosphorus Levels on Performance, Digestibility and Egg Quaility in Layer (Microbial Phytase와 무기태 인 수준별 급여가 산란 생산성, 소화율 및 계란 품질에 미치는 영향)

  • 김상호;유동조;박수영;이상진;박용윤;이원준
    • Korean Journal of Poultry Science
    • /
    • v.27 no.3
    • /
    • pp.243-254
    • /
    • 2000
  • The effect of supplemental microbial phytase and non - phytate phosphorus(NPP) levels on layer productivity and nutrient digestibility were conducted in 640 21 weeks - old HyLine brown layer for 12 weeks. Supplemented phytase levels were 0, 300, 500 and 1,000 DPU/kg diet. NPP levels were adjusted with tricalcium phosphate(TCP), which were 0(0.11% NPP), 0.5(0.20), 1.0(0.29) and 1.5%(0.38). ME, CP and Ca levels were maintained at 2,800㎉/kg diet, 16% and 3.5%, respectively. Egg production was increased with phytase compared to without phytase(P〈0.05). Increasement of egg production was higher latter of experimental period. Egg production was not different to phytase levels. Egg production in TCP levels were increased in above 0.5% compared to 0% TCP. Difference of egg production by TCP was higher after 6 week. Especially, egg production to supplemental phytase was higher in 0% TCP. Egg weight was not different to phytase and TCP levels. Egg mass was increased with phytase compared to without phytase, but not difference significantly. There was similar to phytase levels. Egg mass in TCP group was increased in TCP supplementation(P〈0.05). Feed intake was not different in phytase levels, and greater with increasing TCP levels(P〈0.05). Feed conversion was improved with phytase(P〈0.05), and not difference in TCP levels. All of nutrients digestibility tended to improve with phytase, P(P〈0.05), especially. There were not different among phytase levels. The effect of adding phytase was higher in low phosphorus diets compared normal levels. Eggshell breaking strength and eggshell thickness also improved in added phytase(P〈0.05). Tibial ash and P content were slightly increased with phytase, and Ca content also was higher(P〈0.05) compared without phytase. We concluded that supplemental phytase in low phosphorus diet was showed to increase laying performance, feed efficiency, nutrients digestibility, egg quality, and bone development. Phytase supplementation was able to compensate for low NPP diet. We also thought optimum phytase level is 300 DPU, and can decrease NPP supplementation adding phytase in later diet.

  • PDF

Isolation of Phytase Producing Pseudomonas fragi and Optimization of its Phytase Production (Acid Phytase를 생산하는 Pseudomonas fragi의 분리와 phytase의 생산조건)

  • Kim, Young-Jin;Jang, Eun-Seok;In, Man-Jin;Oh, Nam-Soon
    • Applied Biological Chemistry
    • /
    • v.46 no.4
    • /
    • pp.291-298
    • /
    • 2003
  • A bacterial strain producing a high level of an extracellular phytase was isolated from livestock waste water, identified as a strain of Pseudomonas fragi and designated as Pseudomonas fragi Y9451. Under the phytase production medium, the activity of phytase reached the highest level after 120 hours of incubation. On the effect of carbon sources on the phytase production, the most favorable carbon source for phytase production was fructose. As for the effect of nitrogen sources, high levels of phytase activity were detected in the medium containing nutrient broth as the nitrogen source. Free $PO_4^{3-}$ inhibited phytase production with increasing concentration of $KE_2PO_4$ and phytate in the media. The addition of $CaCl_2$ and $MgSO_4$ also resulted in the inhibition of phytase production. To investigate the effect of aeration on the phytase production, different volumes of culture broth in Erlenmeyer flasks were incubated in rotary shaker at the speed of 200 rpm. As a result, a high level of phytase activity was detected at small volume of culture broth as compared to larger volume because of its more aerobic condition.

Potential immune-modulatory effects of wheat phytase on the performance of a mouse macrophage cell line, Raw 264.7, exposed to long-chain inorganic polyphosphate

  • An, Jeongmin;Cho, Jaiesoon
    • Animal Bioscience
    • /
    • v.34 no.3_spc
    • /
    • pp.463-470
    • /
    • 2021
  • Objective: This experiment was conducted to find out the immunological effects of wheat phytase when long-chain inorganic polyphosphate (polyP) treated with wheat phytase was added to a macrophage cell line, Raw 264.7, when compared to intact long-chain polyP. Methods: Nitric oxide (NO) production of Raw 264.7 cells exposed to P700, a long-chain polyP with an average of 1,150 phosphate residues, treated with or without wheat phytase, was measured by Griess method. Phagocytosis assay of P700 treated with or without phytase in Raw 264.7 cells was investigated using neutral red uptake. The secretion of tumor necrosis factor α (TNF-α) by Raw 264.7 cells with wheat phytase-treated P700 compared to intact P700 was observed by using Mouse TNF-α enzyme-linked immunosorbent assay kit. Results: P700 treated with wheat phytase effectively increased NO production of Raw 264.7 cells by 172% when compared with intact P700 at 12 h exposure. At 5 mM of P700 concentration, wheat phytase promoted NO production of macrophages most strongly. P700, treated with wheat phytase, stimulated phagocytosis in macrophages at 12 h exposure by about 1.7-fold compared to intact P700. In addition, P700 treated with wheat phytase effectively increased in vitro phagocytic activity of Raw 264.7 cells at a concentration above 5 mM when compared to intact P700. P700 dephosphorylated by wheat phytase increased the release of TNF-α from Raw 264.7 cells by 143% over that from intact P700 after 6 h exposure. At the concentration of 50 μM P700, wheat phytase increased the secretion of cytokine, TNF-α, by 124% over that from intact P700. Conclusion: In animal husbandry, wheat phytase can mitigate the long-chain polyP causing damage by improving the immune capabilities of macrophages in the host. Thus, wheat phytase has potential as an immunological modulator and future feed additive for regulating immune responses caused by inflammation induced by long-chain polyP from bacterial infection.

Effects of Phytase Supplementation on Nutrient Balance and Production of Laying Hens (Phytase 첨가가 산란계의 체내 영양소 균형 및 생산성에 미치는 효과)

  • 홍종옥;김인호;김은주;권오석;이상환
    • Korean Journal of Poultry Science
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • Two experiments were carried out to evaluate the effects of adding phytase on nutrient availability and serum Ca and P level and to determine the effects of phytase on laying performance and egg quality in laying hens. In Exp. 1, twenty four laying hens(1.9kg average body weight and 78.4% egg production) were allotted to four treatments. Treatments included 1) corn-soybean meal based-control diet and 2), 3) and 4) control diet with phytase 200, 400 and 600 unit/kg, respectively. There were no significant effects of treatments on dry matter and nitrogen digestibility(P〉0.05). Ash, Ca and P digestibility in layer fed diet with phytase were greater than those in layer fed control diet(P〈0.05). Laying hens fed diets with phytase 200 and 400 unit retained more Ca than those fed other treatments (P〈0.05). No statistical difference was found for Ca exsretion(P〉0.05). P retention was greater for laying hens fed diet phytase 600 unit than other treaments(P〈0.05). P level in serum was higher for laying hens fed diets with phytase 400 and 600 unit than for laying hens fed other treatments. In Exp. 2, three hundred, IAS Brown layer, 40-week-old, divided into two treatment groups(control vs phytase supplementation without inorganic phosphate in the diets) with five replications per treatment and 30 layers per replication were fed the diets for 6 weeks. Egg production, egg weight and eggshell breaking strength and thickness were not different significantly(P〉0.05). In conclusion, phytase supplementation can be used to increase P utilization and retention in laying hens. Also, phytase supplementation was effective to spare inorganic phosphate in laying hen diets without any adverse effects on production performances.

  • PDF

Application of Phytase, Microbial or Plant Origin, to Reduce Phosphorus Excretion in Poultry Production

  • Paik, InKee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.1
    • /
    • pp.124-135
    • /
    • 2003
  • In order to prevent pollution from animal waste, the excretion of nutrients should be reduced through proper nutritional management. Among the many nutrients of concern, such as N, P, Cu, Zn and K, P is one of the most concerned nutrients to be managed. Seven feeding trials, three with layers and four with broilers, were conducted to determine if microbial phytase supplementation can reduce non-phytate phosphorus (NPP) level in diets and results in concomitant reductions of P excretion. The results showed that microbial phytase can be successfully used to achieve these purposes. Activity of natural phytase in certain plant feedstuffs is high enough to be considered in feed formulation. Three experiments have been conducted to study the characteristics of plant phytase and its application to feeding of broilers. Selected brands of wheat bran could be successfully used as a source of phytase in broiler feeding.

Isolation of Phytase-Producing Pseudomonas sp. and Optimization of its Phytase Production

  • Kim, Young-Hoon;Gwon, Moon-Nam;Yang, Si-Yong;Park, Tae-Kyu;Kim, Chan-Gil;Kim, Chang-Won;Song, Min-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.279-285
    • /
    • 2002
  • Phytase (myo-inositol hexakisphosphate phospho-hydrolase, EC 3.1.3.8) catalyzes the hydrolysis of phytate (myo-inositol hexakisphosphate) to release inorganic phosphate. A bacterial strain producing phytase was isolated from soil around a cattle shed. To identify the strain, cellular fatty acids profiles, the GC contents, a quinine-type analysis, and physiological test using an API 20NE kit were carried out. The strain was identified to be a genus of Pseudomonas sp. and named as Pseudomonas sp. YH40. The optimum culture condition for the maximum productivity of phytase by Pseudomonas sp. YH40 were attained in a culture medium composed of $1.0\%$ (w/v) glycerol, $2.0\%$ (w/v) peptone, and $0.2\%$ (w/v) $FeSO_4{\cdot}7H_2O$. Within the optimal medium condition, the production of phytase became highest after 10 h of incubation, and the maximal phytase production by Pseudomonas sp. YH40 was observed at $37^{\circ}C$ and pH 6.0.

Medium Optimization for Phytase Production by Recombinant Escherichia coli Using Statistical Experimental Design

  • Choi, Won-Chan;Oh, Byng-Chul;Kim, Hyung-Kwoun;Lee, Eun-Sook
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.490-496
    • /
    • 2002
  • The production of E. coli WC7 phytase from a recombinant E. coli strain was optimized using a statistical experimental design approach. Two-level complete factorial designs with seven variables were used for the media optimization. In the first optimization step, the influence of disodium succinate, yeast extract, $K_2HPO_4,\;NH_4H_2PO_4,\;MgSO_4$, NaCl, and trace elements on phytase production was evaluated. As a result, disodium succinate, yeast extract, $NH_4H_2PO_4$, NaCl, and the trace elements were found to have a positive influence on the phytase production, while $K_2HPO_4\;and\;MgSO_4$ had a negative influence. In the second step, the concentrations of disodium succinate and yeast extract were further optimized using central composite designs. The maximum phytase activity obtained was 234 U/ml using 15.9 g/1 disodium succinate, 20 g/1 yeast extract, 5 g/1 K_2HPO_4,\;10 g/1 NH_4H_2PO_4,\;1.5 g/1 MgSO_4$, 4 g/1 NaCl, and 1.5 m1/1 trace elements, which was about a 14-fold increase in comparison with that obtained using the basal medium.

Effects of Dietary Available Phosphorus Levels and Phytase Supplementation on Performance, Egg Quality and Serum Biochemical Parameters of Hy-Line Brown Laying Hens from 40 to 60 Weeks of Age

  • Lim, Chun Ik;Rana, Md Masud;Kang, Hwan Ku;Ryu, Kyeong Seon
    • Korean Journal of Poultry Science
    • /
    • v.47 no.4
    • /
    • pp.255-265
    • /
    • 2020
  • This study was performed to evaluate the effects of available phosphorus (AP) levels with or without supplemental phytase on the performance, egg quality, and serum biochemical parameters of laying hens. A total of 540 laying hens (40-week-old) were housed in cages and assigned to 6 dietary treatments with 5 replicates each, for 20 weeks. The treatments consisted of 0.20%, 0.25%, and 0.30% AP diets with or without phytase supplementation. During the 20-week period, egg production was lowest in hens fed the 0.20% AP diet; however, phytase supplementation in the diet completely corrected the adverse effect (P<0.05). No consistent difference was observed in egg production between hens fed the 0.25% and 0.30% AP diets and those fed the 0.20% and 0.30% AP diets with phytase supplementation. Similarly, egg mass was lowest in the 0.20% AP diet-fed group, and no difference in egg mass was observed in the 0.25% and 0.30% AP diet as well as the phytase-supplemented diet groups; however, egg mass was improved in the phytase-supplemented diet groups(P<0.05). Egg quality traits did not differ with dietary treatments. Serum alkaline phosphatase level showed a linear decrease (P<0.05) in the phytase-treated groups with increasing AP levels; moreover, a numerically linear increase (P<0.05) in serum Ca and P levels was observed in the phytase-treated groups. The results of this study indicate that phytase supplementation in the diet of laying hens could increase egg production and may lead to greater mineral absorption.

Purification of Phytase from Aspergillus ficuum and Production of Anti-phytase Antibody (Aspergillus ficuum의 Phytase의 정제와 Anti-phytase 항체생산)

  • Kim, Keun
    • The Korean Journal of Mycology
    • /
    • v.27 no.4 s.91
    • /
    • pp.299-303
    • /
    • 1999
  • Phytase(myo-inositol-hexakis phosphate 3-phosphohydrolase, E C 3.1.3.8) sequentially hydrolyzes phytate to myo-inositol and inorganic phosphate. Phytase of Aspergillus ficuum was purified to homogeneity using ultrafiltration, cation exchange column and anion exchange column. It's molecular weight is estimated as around 90,000 by SDS-PAGE. Antibody against the phytase was produced by immunizing mice with the purified phytase. The titer of the antibody was determined to be 1/25,000.

  • PDF

Production and Reaction Properties of Phytase by Saccharomyces cerevisiae CY strain (Saccharomyces cerevisiae CY 균주에 의한 Phytase의 생성과 반응특성)

  • Seo, Sung-Won;In, Man-Jin;Oh, Nam-Soon
    • Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.228-232
    • /
    • 2005
  • A yeast strain producing phytase, isolated from a mash of Korean traditional Yakju, was identified as a strain of Saccharomyces cerevisiae and designated as Saccharomyces cerevisiae CY strain. Phytase was produced by CY strain both intracellularly and extracellularly. Total phytase activity by the shaking culture was about two times higher than that of the static culture. The portion of extracellular phytase to total phytase activity ranged between 23 and 49 percent, depending on the glucose concentration in the culture medium. Phytase production was reached at approximately 1 U/ml as total phytase activity and the maximum intracellular phytase activity was 0.17-0.19 U/mg-DCW at late logarithmic growth phase. The optimum reaction pH and temperature of intracellular phytase were 3.5 and $40^{\circ}C$, respectively. Over 95% of the phytate was degraded by growing cells after 36 hours yeast cell culture and about 90% of total phytate was effectively degraded by suspending the whole cell with the biomass of 0.4 mg-DCW/ml-reaction solution after 12 hours degradation reaction.