DOI QR코드

DOI QR Code

Numerical Study on the Thermal Entrance Effect in Miniature Thermal Conductivity Detectors

소형 Thermal Conductivity Detector의 입구열전달 거동에 대한 수치해석

  • Kim, U-Seung (Department of Mechanical Engineering, College of Engineering, Hanyang University) ;
  • Kim, Yeong-Min (Dept. of Mechanical Engineering, Graduate School of Hanyang University) ;
  • Chen, Kuan (Department of Mech. Eng., University of Utah) ;
  • Cheon, Won-Gi (Cheju National University)
  • 김우승 (한양대학교 공학대학 기계공학과) ;
  • 김영민 (한양대학교 대학원 기계공학과) ;
  • ;
  • 천원기 (제주대학교 에너지공학과)
  • Published : 2002.03.01

Abstract

The microchannel flow in miniature TCDs (thermal conductivity detectors) is investigated numerically. The solutions based on the boundary layer approximation are not very accurate in the region of the duct inlet for low Reynolds numbers. In this study, two-dimensional Navier-Stokes equations are considered to analyze the gas flow in a miniature TCD. Effects of channel size, inlet and boundary conditions on the heat transfer rate are examined. When the gas stream is not preheated, the distances for a miniature TCD to reach the conduction-dominant region for duct flow are found to be approximately two and three times the thermal entry length for duct flow with constant properties, respectively, leer constant wall temperature and constant wall heat flux boundary conditions. If the gas temperature at the channel inlet is close to the mean gas temperature in the conduction-dominant region, the entrance region is much shorter compared to other cases considered in this study.

Keywords

References

  1. Scott, R. P. W., 1998, Introduction to Analytical Gas Chromatography 2nd edn., Marcel Dekker, New York, NY
  2. Fowlis, I. A., l996, Gas Chromatography, 2nd edn., Wiley, Chicherster, West Sussex, England
  3. Noebels, H. J., Wall, R. F., Brenner, N. (Eds.), 1961, Gas Chromatography: Second International Symposium on Gas Chromatography, Academic Press, New York, NY
  4. Lawson, A. E. Jr., Miller, J. M. 1966, J. of Chromatography Science, Vol.4 https://doi.org/10.1093/chromsci/4.8.273
  5. Daynes, H. A., 1933, Gas analysis by measurement of thermal conductivity, Cambridge Univ. Press, Canbridge, Great Britain
  6. Wiseman, W. A., 1959, 'Katharometer Behivior,' Ann. N.Y. Acad. Sci., Vol. 72 https://doi.org/10.1111/j.1749-6632.1959.tb44194.x
  7. Snowden, F. C. and Eanes, R. D., 1959, 'Thermal Conductivity Detectors for Process Control,' Ann. N. Y. Acad. Sci., Vol. 72, pp. 764-778 https://doi.org/10.1111/j.1749-6632.1959.tb44202.x
  8. Reston, R. R. and Kolesar, E. S., 1994, 'Silicon-Micromachined Gas Chromatography System used to Seperate and Detect Ammonia and Nitrogen Dioxide-Part I: Design, Fabrication and Integration of the Gas Chromatography System,' IEEE/ASME J. Microelectromech. Syst., Vol. 3, pp. 134-146 https://doi.org/10.1109/84.338634
  9. Kolesar, E. S. and Reston, R. R. 1994, 'Silicon-Micromachined Gas Chromatography System used to Seperate and Detect Ammonia and Nitrogen Dioxide-Part II: Evaluation, Analysis and Theoretical Modeling of the Gas Chromatography System,' IEEE/ASME J. Microelectromech. Syst., Vol. 3, pp. 147-154 https://doi.org/10.1109/84.338635
  10. Kolesar, E. S. 1998, 'Review and Summary of a Silicon Micromachined Gas Chromatography System,' IEEE Trans. on Components. Packaging, and Manufacturing Tech., Part B, Vol. 21, No. 4, pp. 324-328 https://doi.org/10.1109/96.730412
  11. Mcnair, H. M. and Miller, J. M., 1998, Basic Gas Chromatography, John Wiley and Sons, New York
  12. Jerman, J. H., 1981, 'A Miniature Thin-Film Thermal Conductivity Detector for an Integrated Gas Chromatograph,' PhD thesis, Stanford Univ., Stanford, CA
  13. Terry, S. C., Jerman, J. H. and Angell, J. B., 1979, 'A Gas Chromatographic Air Analyser Fabricated on a Silicon Wafer,' IEEE Trans. Electron Devices ED-26, Vol. 12, pp. 1880-1886
  14. Huang, Y., Bau, H. H., 1997, 'The Effects of Forced Convection on the Power Dissipation of Constant-Temperature Thermal Conductivity Sensors,' Journal of Heat Transfer, Vol. 119, pp. 30-37 https://doi.org/10.1115/1.2824097
  15. Chen, K. and Wu, Y. E., 2000, 'Thermal Analysis and Simulation of the Microchannel Flow in Miniature Thermal Conductivity Detectors,' Sensors and Actuators A Physical, Vol. 79, pp. 211-218 https://doi.org/10.1016/S0924-4247(99)00287-3
  16. Kakac, S., Shah, R. K. and Aung, W., 1987, Handbook of Single-Phase Convective Heat Transfer, John Wiley & Sons
  17. Duncan, A. B. and Peterson, G. P., 1994, 'Review of Microscale Heat Transfer,' Appl. Mech. Rev., Vol.47, No.9, ASME, pp. 397-428 https://doi.org/10.1115/1.3111085
  18. Arkilic, E. B., Breuer, K. S. and Schmidt, M. A., 1994, 'Gaseous Flow in Microchannels,' Application of Microfabrication to Fluid Mechanics, FED-Vol, 197, ASME, pp. 57-66
  19. Hirschfelder, J. O., Bird, R. B. and Sportz, E. L., 1949, Chem. Revs., Vol. 44
  20. Chen, R. Y., 1973, 'Flow in the Entrance Region at Low Reynolds Numbers,' J. Fluids Eng., Vol. 95, pp. 153-158 https://doi.org/10.1115/1.3446948