DOI QR코드

DOI QR Code

화학기상응축법에 의한 나노구조 텅스텐카바이드 분말의 제조와 미세구조 변화

Synthesis and Microstructural Changes of Nanostructured Tungsten Carbide Powder by Chemical Vapor Condensation Process

  • 김병기 (한국기계연구원 재료연구부) ;
  • 김진천 (한국기계연구원 재료연구부) ;
  • 하국현 (한국기계연구원 재료연구부) ;
  • 최철진 (한국기계연구원 재료연구부) ;
  • ;
  • ;
  • ;
  • ;
  • O.V.Tolochko
  • 발행 : 2002.06.01

초록

Nanosized tungsten carbide powders were synthesized by the chemical vapor condensation(CVC) process using the pyrolysis of tungsten hexacarbonyl($W(CO)_6$). The effect of CVC parameters on the formation and the microstructural change of as-prepared powders were studied by XRD, BET and TEM. The loosely agglomerated nanosized tungsten-carbide($WC_{1-x}$) particles having the smooth rounded tetragonal shape could be obtained below $1000^{\circ}C$ in argon and air atmosphere respectively. The grain size of powders was decreased from 53 nm to 28 nm with increasing reaction temperature. The increase of particle size with reaction temperature represented that the condensation of precursor vapor dominated the powder formation in CVC reactor. The powder prepared at $1000^{\circ}C$ was consisted of the pure W and cubic tungsten-carbide ($WC_{1-x}$), and their surfaces had irregular shape because the pure W was formed on the $WC_{1-x}$ powders. The $WC_{1-x}$ and W powders having the average particles size of about 5 nm were produced in vacuum.

키워드

참고문헌

  1. R.W. Siegel: NanoStructured Materials, 4 (1994) 121. https://doi.org/10.1016/0965-9773(94)90134-1
  2. H. Gleiter: NanoStructured Materials, 6 (1995) 3. https://doi.org/10.1016/0965-9773(95)00025-9
  3. H. V.Voyer and T. L. Gall: Metals Hand Book, ASM.
  4. F. V. Lenel: Powder Metallurgy Principles and Applications, MPIF, Frinceton, NJ, (1980).
  5. 김병기 : 기계와 재료, 3 (1991) 63.
  6. B. Aronsson: Powder Metallurgy, 30 (1987) 175. https://doi.org/10.1179/pom.1987.30.3.175
  7. M. A. Xueming, J. I. Gang, Z. Ling and D. Yuanda: J. Alloys and Compounds, 262(1998) 267. https://doi.org/10.1016/S0925-8388(97)00252-1
  8. L. E. McCandlish, B. H. Kear and B. K. Kim: Mater. Sci and Tech., 6 (1990) 953. https://doi.org/10.1179/mst.1990.6.10.953
  9. W. Chang, G. Skandan, S. C. Danforth and B. H. Kear: NanoStructured Materials, 4 (1994) 507. https://doi.org/10.1016/0965-9773(94)90058-2
  10. C. J. Choi, O. Tolochko, B. K. Kim: Materials Letters, (2002) in press.
  11. Y. M. Sun, S. Y. Lee, A. M. Lemonds, E. R. Engbrecht, S. Veldman, J. Lozano, J. M. White, J. G. Ekerdt, I. Emesh and K. Pfeifer: Thin Solid Films, 397 (2001) 109. https://doi.org/10.1016/S0040-6090(01)01367-0
  12. Z. Q. Li, H. F. Zhang, X. B. Zhang, Y. Q. Wang and X. J.Wu: NanoStructured Materials, 10 (1998) 179. https://doi.org/10.1016/S0965-9773(98)00054-3
  13. S. Sharafat, A. Kobayashi, S. Chen, N.M.Ghoniem: Surface & Coatings Technology, 130 (2000) 164. https://doi.org/10.1016/S0257-8972(00)00722-2
  14. N. M Hwang, J. H. Hahn and D. N. Yoon: J. Crystal Growth, 161 (1996) 55. https://doi.org/10.1016/0022-0248(95)00943-4
  15. 유지훈 : 한양대학교 박사학위 논문, (2000) 120.
  16. W. C. Hinds: Aerosol Technology, John Wiley and Sons Inc., New York, (1982) 254.