Low Cycle Fatigue Life Prediction of HSLA Steel Using Total Strain Energy Density

전변형률 에너지밀도를 이용한 고강도 저 합금강의 저주기 피로수명 예측

  • Kim, Jae-Hoon (Dept. of Mechanical Design Engineering, Chungnam National University) ;
  • Kim, Duck-Hoi (Dept. of Mechanical Design Engineering, Graduate School of Chungnam National University)
  • 김재훈 (충남대학교 기계설계공학과) ;
  • 김덕희 (충남대학교 대학원 기계설계공학과)
  • Published : 2002.06.01

Abstract

Low cycle fatigue tests are performed on the HSLA steel that be developed for a submarine material. The relation between strain energy density and numbers of cycles to failure is examined in order to predict the low cycle fatigue life of HSLA steel. The cyclic properties are determined by a least square fit techniques. The life predicted by the strain energy method is found to coincide with experimental data and results obtained from the Coffin-Manson method. Also the cyclic behavior of HSLA steel is characterized by cyclic softening with increasing number of cycle at room temperature. Especially, low cycle fatigue characteristics and microstructural changes of HSLA steel are investigated according to changing tempering temperatures. In the case of HSLA steel, the $\varepsilon$-Cu is farmed in $550^{\circ}C$ of tempering temperature and enhances the low cycle fatigue properties.

Keywords

References

  1. 김재훈, 김덕희, 임동규, 김후식, PFS강 기계적 특성 평가, ADD TEDC-411-010275, 2000
  2. Polak, J., Cyclic Plasticity and Low Cycle Fatigue Life of Metals, Elsevier, 1991
  3. Bannantine, J. A., Comer, J. J. and Handrock, J. L., Fundamentals of Metal Fatigue Analysis, Prentice Hall, 1990
  4. Feltner, C. E. and Morrow, J. D., 'Micro Plastic Strain Hysteresis Energy as a Criterion for Fatigue Fracture,' Journal of Basic Engneering, Vol. 1, No. 1, pp. 15-22, 1961
  5. Ellyin, F. and Kujawski, D., 'Plastic Strain Energy in Fatigue Failure,' Transactions of ASME, Journal of Pressure Vessel Technology, Vol. 106, No. 4, pp. 342-347, 1984 https://doi.org/10.1115/1.3264362
  6. Lefebvre, D. and Ellyin, F., 'Cyclic Response and Inelastic Strain Energy in Low Cycle Fatigue,' International Journal of Fatigue, Vol. 6, No. 1, pp. 9-15, 1984 https://doi.org/10.1016/0142-1123(84)90003-3
  7. Ellyin, F., 'Effect of Tensile Mean Strain on Plastic Strain Energy and Cyclic Response,' Journal of Engineering Materials and Technology, Vol. 107, pp. 119-125, 1985 https://doi.org/10.1115/1.3225786
  8. 김재훈, 김덕회, 이종현, 조성석, 전병완, '고강도 저합금강의 저주기 피로 특성,' 대한기계학회 춘계학술대회 논문집 A, pp. 169-174, 2001
  9. 김덕회, 김재훈, 조성석, 전병완, 심인옥, 'PFS강의 저주기 피로수명 예측,' 한국군사과학기술학회 종합학술대회 논문집, Vol. I, pp. 241-244, 2001
  10. Kim, D. H., Kim, J. H., Lee, J. H., Jeon, B. H. and Cho, S. S., 'Low Cycle Fatigue Life Prediction of Structural Steels,' Proceeding of the APCFS & ATEM'01, Vol. I, PP. 378-383, 2001
  11. Ellyin, F. and Kujawski, D., 'The Energy-Based Fatigue Failure Criterion,' Microstructure and Mechanical Behaviour of Materials, Vol. II, pp. 541-600, 1986
  12. Golos, K. and Ellyin, F., 'A Total Strain Energy Density Theory for Cumulative Fatigue Damage,' Transactions of ASME, Journal of Pressure Vessel Technology, Vol. 110, pp. 36-41, 1988 https://doi.org/10.1115/1.3265565
  13. 박태원, 심인옥, 김영우, 강창윤, '열분석법에 의한 Cu를 함유한 HSLA강의 시효거동에 관한 연구,' 대한금속학회지, Vol. 33, No. 1, pp. 57-64, 1995
  14. ASTM, 'Tentative Recommended Practice for Comstant-Amplitude Low Cycle Fatigue Testing,' ASTM E 606, 1996
  15. Raske, D. T. and Morrow, J. D., 'Mechanics of Materials in Low Cycle Fatigue Testing,' Manual on Low Cycle Fatigue Testing, ASTM STP 465, pp. 1-25, 1969
  16. 권재도, 우승완, 박중철, 이용선, 박윤원, '주조 스테인레스강 CF8M의 430$0^{\circ}C$ 열화거동에 관한 연구(Ⅱ)-저사이클 피로특성 평가,' 대한기계학회논문집 A권, 제24권, 제9호, pp. 2183-2190, 2000
  17. 백수곤, 현중섭, 송기욱, 홍성인, '소성변형에너지법을 이용한 1Cr0.5Mo강의 저주기피로 특성에 관한 연구,' 한국재료학회지, 제7권, 제11호, pp.1007-1011, 1997
  18. 현중섭, 백수곤, 송기욱, '소성변형에너지에 의한 유지시간효과를 고려한 1Cr-0.5Mo강의 저사이클 크리프-피로 수명예측에 관한 연구,' 대한기계학회논문집 A권, 제22권, 제12호, pp. 2093-2099, 1998
  19. 전병완, Cu 석출경화형 HSLA-100M강의 미세 조직 및 기계적성질에 미치는 템퍼링온도의 영향, 충남대학교 대학원 박사학위논문, 2001
  20. Morrow, J., 'Cycle Plasticity Strain Energy nad Fatigue of Metals,' Internal Friction, Damping, and Cyclic Plasticity, ASTM STP 378, pp. 45-87, 1965