Suppression of Height of Tomato Plug Seedlings by Seed Treatment of Growth Retardants

생장억제제의 종자처리를 통한 토마토 플러그묘의 도장억제

  • 정병룡 (경상대학교 대학원 응용생명과학부 원예학과) ;
  • 신우근 (경상대학교 대학원 응용생명과학부 원예학과)
  • Published : 2002.01.01

Abstract

This experiment was conducted far the efficient use of plant growth retardants (PGR) for suppression of plug seedling height. 'Seokwang' tomato seeds were soaked in I5 mL solution of daminozide (1,000, 10,000, or 100,000 mg.L-1) or uniconazole (1, 10, or 100 mg.L-1). And then, they were put in $25^{\circ}C$ chamber for one or three days. Seeds were washed in tap waters and were dried in 5$^{\circ}C$ chamber for one day. Dried tomato seeds were sown and seedlings were raised in 288-cell plug trays. Seedlings grown were evaluated at 21 and 38 days after sowing. Treatments of 10 or 100 mg.L-1 uniconazole as compared to the control had significantly suppressed hypocotyl length and seedling height, but fresh and dry weights of roots, emergence, no. of leaves, chlorophyll concentration, dry matter, and T/R ratio were not significant by different among treatments.

플러그 육묘의 도장억제를 위한 많은 양의 생장억제제 사용과 사용의 적절한 시기를 선택하기 위해 여러 농도의 daminozide(B-nine)과 uniconazole(Sumagic)용액에 토마토 종자를 침지하는 실험을 수행하였다. Daminozide 1,000,10,000 및 100,000mg.L$^{-1}$과 uniconazole 1,10 및 100mg.L-1 용액 15mL에 처리별로 토마토 종자 약 500립씩을 침지하여 $25^{\circ}C$ 챔버에 1일 또는 3일간 두었다. uniconazole 100 mg.L$^{-1}$과 1,000mg.L$^{-1}$ 1일 동안 침지시킨 것과 대조구를 비교해 볼 때 하배축 길이와 초장의 억제에 있어서는 유의차가 크게 나타났고, 지상부와 지하부 생체중과 건물중, 전체 생체중과 건물중, 유묘 출현률, 엽수, 엽면적, 엽록소 농도, 건물률, 그리고 T저율에서는 유의타가 없거나 크지 않았다. 그러므로 종지침지 처리는 하배축길이와 초장을 억제하는데 유의한 효과를 나타내는 새로운 생장억제제처리 방법의 하나로 가능성을 보여주었다.

Keywords

References

  1. Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24:1-15 https://doi.org/10.1104/pp.24.1.1
  2. Davis, T.D., F.L. Steffons, and N. Sankhla. 1988. Triazole plant growth regulators, p. 63-105. In: J. Janick (ed.). Hort. Rev. vol. 10. Timber Press, Portland, ORe
  3. Ito, T. 1992. Present state of transplant production practices in Japanese horticultural industry. p. 65-82. In: Kurata K and Kozai T. (eds.). Transplant Production Systems. Kluwer Academi,c Publishers, The Netheiriands
  4. Izumi, K, I. Yamaguchi, A. Wada, H. Oshio. and N. Takahashi. 1984. Effects of a new plant growth retardant (E)-I-(4-Chlorophenyl)-4,4-dimethyl-2-( I ,2A-triazol-I -yl)-l-penten-3-01 (S-3307) on the growth and gibberellin content of rice plants. Plant Cell Physiol. 25:611-617
  5. Jeong, B.R. 1998. Technology and environment management for the production of plug transplants of flower crops. Kor. J. Hort. Sci. & Technol. 16:282-286
  6. Kemble, J.M., J.M. Davis, R.G. Gradner. and D.C. Sanders. 1994. Spacing, root cell volume, and age affect production and economics of compact-growthhabit tomatoes. HortScience 29: 1460-1464
  7. Lee. J.W. and K.Y. Kim. 1999. Tomato seedling quality and yield following raising seedlings with different cell sizes and pretransplant nutritional regimes. J. Kor. Soc. Hort. Sci. 40:407-411
  8. Leskovar, D.I., D.J. Cantliffe, and PJ. Stoffella. 1991. Growth and yield of tomato plants in response to age of transplants. J. Amer. Soc. Hort. Sci. 116:416-420
  9. Pasian, C.C. and M.A. Bennett. 2001. Paclobutrazol soaked marigold, geranium, and tomato seeds produce short seedlings. HortScience 36:721-723
  10. Weston, L.A. and B.H. Zandstra. 1986. Effect of root container and location of production on growth and yield of tomato transplants. J. Amer. Soc. Hort. Sci. I 11:498-501