Hemodynamics and Vascular Diseases

혈류역학과 혈관계 질환

  • Rhee, Kyehan (Dept.of Mechlical Engineering, Myongji University)
  • 이계한 (명지대학교 공과대학 기계공학부)
  • Published : 2002.04.01

Abstract

Keywords

References

  1. Fung, Y.C., Biomechanics, Springer-Verlag, New York, pp. 62-89, 1984
  2. Casson, M., Rheology of Disperse Systems, Mills, C.C.(ed.), Pergamon, Oxford, pp. 84-104, 1959
  3. McDonald, D.A., Blood Flow in Arteries, Edward Arnold, London, 1974
  4. Womersley, J.R., 'Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known,' J. Physiol., Vol. 127, pp. 553-563, 1955 https://doi.org/10.1113/jphysiol.1955.sp005276
  5. Mates, R.E., 'Arterial Macrocirculatory Hemodynamics,' Biomedical Engineering Handbook. Bronzino, J.D. (ed), CRC Press, pp. 454-462, 1995
  6. Leverett, L.B., Hellums, J.D., Alfrey, C.P., and Lynch, E.C., 'Red blood cell damage by shear stress,' Biophysical Journal, Vol. 12, pp. 257-273, 1972 https://doi.org/10.1016/S0006-3495(72)86085-5
  7. Blackshear, P.L., and Blackshear G.L., 'Mechanical Hemolysis,' Handbook of Bioengineering, Skalak, R. and Chien, S. (ed), McGraw Hill, 1987
  8. Frangos, J.A., MaIntire, L.V. Eskin, S.G., and Ives, C.L., 'Flow effects on prostacyclin production by cultured human endothelial cells,' Science, Vol. 227, pp. 1477-1479, 1985 https://doi.org/10.1126/science.3883488
  9. Grabowski E. F., Jaffe, E.A., and Weksler, B.B., 'Prostacyclin production by cultured human endothelial cells exposed to step increases in shear stress,' J Lab Clin Med., Vol. 105, pp. 36-43, 1985
  10. Diamond, S. L., Sharefkin, J.B., Dieffenbach, C., Frazier-Scott, K., McIntire, L.V., and Eskin, S.G., 'Tissue plasminogen activator messenger RNA levels increase in cultured human endothelial cells exposed to laminar shear stress,' J. Cell Physiol., Vol. 143, pp. 364-371, 1990 https://doi.org/10.1002/jcp.1041430222
  11. Nerem, R.M., 'Hemodynamics and the vascular endothelium,' J. Biomech. Eng., Vol. 115, pp. 510-514, 1993 https://doi.org/10.1115/1.2895532
  12. Fry, D.L., 'Acute vascular endothelium changes associated with increased blood velocity gradients,' Circulation Research, Vol. 22, pp. 165-197, 1968 https://doi.org/10.1161/01.RES.22.2.165
  13. Ku, D.N., Giddens, D.P., Zarins, C.K., and Gragov, S., 'Pulsatile flow and atherosclerosis in the human carotid bifurcation,' Arteriosclerosis, Vol. 5, pp. 293-302, 1985 https://doi.org/10.1161/01.ATV.5.3.293
  14. Dewey, C.F., Bussolari, S.R., Gimbrone, M.A., Jr., and Davies, P.F., 'The dynamic response of vascular endothelial cells to fluid shear stress,' J. Biomech. Eng., Vol. 103, pp. 177-181, 1981 https://doi.org/10.1115/1.3138276
  15. Levesque, M.J. and Nerem, R.M., 'The elongation and orientation of cultured endothelial cells in response to shear stress,' J. Biomech. Eng., Vol. 107, pp. 341-347, 1985 https://doi.org/10.1115/1.3138567
  16. Spraque, E.A., Cayatte, A.J., Nerem, R.M., and Schwartz, C.J., 'Cultured endothelial cells conditioned to prolonged low shear stress exhibit enhanced monocytes adherence and expression of related genes, MCP-1 and VCAM-1,' Proce. of the Cardiovasc. Technology, 1992
  17. Lefer, A.M. and Ma, X.L., 'Decreased basal nitric oxide release in hypercholestrolemia increases neutrophil adherence to rabbit coronary artery endothelium,' Arteriosclerosis and Thrombosis, Vol. 13, pp. 771-776, 1993 https://doi.org/10.1161/01.ATV.13.6.771
  18. Ku, D.N. and Allen, R.C., 'Vascular Grafts,' The Biomedical Engineering Handbook, Bronzino, J.D. (ed), CRC Press, pp. 1871-1878, 1995
  19. Zarins, C.K., Giddens, D.P., Bharadvaj, B.K., Sotturai, V.S., Mabon, R.F., and Glagov, S., 'Carotid bifurcation atherosclerosis: quantitative correlation of plaque localization with flow velocity profiles and wall shear stress,' Circulation Research, Vol. 53, pp. 502-514, 1983 https://doi.org/10.1161/01.RES.53.4.502
  20. Lei, M., Kleinstreuer, C., and Archie, J.P. Jr., 'Geometric design improvements for femoral graft artery junctions mitigating restenosis,' J. Biomechanics, Vol. 29, pp. 1605-1614, 1996 https://doi.org/10.1016/0021-9290(96)83730-4
  21. Ojha, M., 'Wall shear stress temporal gradient and anastomotic intimal hyperplasia,' Circulation Research, Vol. 74, pp. 1227-1231, 1994 https://doi.org/10.1161/01.RES.74.6.1227
  22. Bernstein, E.F., Dilley, R.B., Goldberger, L.E., Gosink, B.B., and Leopold, G.R., 'Grow rates of small abdominal aortic aneurysms,' Surgery, Vol. 80, pp. 765-773, 1976
  23. Quill, D.S., Logan, M.P., and Summer, D.S., 'Ultrascreening for the detection of abdominal aortic aneurysms,' Surg. Clin. N. Am., Vol. 69, pp. 713-720, 1989 https://doi.org/10.1016/S0039-6109(16)44878-4
  24. Budwig, R.D., Elger, D., Hooper, H., and Slippy, J., 'Steady flow in abdominal aortic aneurysm models,' J. Biomech. Eng., Vol. 115, pp. 418-423, 1993 https://doi.org/10.1115/1.2895506
  25. Schrader, T., Peattie, R.A., Bluth, E.I., and Comstock, C.E., 'A qualitative investigation of turbulence in the flow through a model of an abdominal aortic aneurysm,' Invest. Radiol. Vol. 27, pp. 515-519, 1992 https://doi.org/10.1097/00004424-199207000-00008
  26. Peatie, R.A., Schrader, T., Bluth, E.A., and Comstock, C.E., 'Development of turbulent in steady flow through models of abdominal aortic aneurysms,' J. Ultra Sound Med., Vol. 13, pp. 467-472, 1994
  27. Asbury, C.L., Ruberti, J.W., Bluth, E.I., and Peatie, R.A., 'Experimental investigation of steady flow on rigid models of abdominal aortic aneurysms, Annals of Biomed. Eng., Vol. 23, pp. 29-39, 1995 https://doi.org/10.1007/BF02368298
  28. Oh, S.E., and Rhee, K., 'A study on the measurement of wall shear rate in the abdominal aortic aneurysm,' J Biomed. Res., Vol. 21, pp. 181-187, 2000
  29. Ojha, M., 'Spatial and temporal variations of wall shear stress within an end-to-side arterial anastomosis model,' J. Biomechanics, Vol. 26, pp. 1379-1388, 1993 https://doi.org/10.1016/0021-9290(93)90089-W
  30. Murakai, M., 'Ultrasound studies of the abdominal aorta with special reference to hemodynamic considerations on thrombus formation in the abdominal aortic aneurysm,' J. Japanese College Angiology, Vol. 23, pp. 401-413, 1983
  31. Johanson, K., 'Aneurysm,' Scientific American, Vol. 247, pp. 110-122, 1982
  32. Hazama, F., Kataoka, H., Yamada, E., Kayembe, K., Hashimoto, N., Kojima, M. and Kim, C., 'Early changes of experimentally induced cerebral aneurysms in rats,' Ame. J. Pathol., Vol. 124, pp. 399-404, 1986
  33. Liepsch, D., Steiger, H.J., Poll, A., and Reulen, H.J., 'Hemodynamic stress in lateral saccular aneurysms,' Vol. 24, pp. 689-710, 1987
  34. Steiger, H.J., 'Pathophysiology of development and rupture of cerebral aneurysm,' Acta Neurochirurgia Suppl., Vol. 48, pp. 24-28, 1990
  35. Liou, T.M., Chang, W.C., and Lia, C.C., 'Experimental study of steady and pulastile flows in cerebral aneurysm model of various sizes at branching site,' J. Biomech. Eng., Vol. 119, pp. 325-332, 1997 https://doi.org/10.1115/1.2796097
  36. Burleson, A., Strother, C.M., and Turitto, V.T., 'Computer modeling of intracranial saccular and lateral aneurysm for the study of their hemodynamics,' Neurosurgery, Vol. 37, pp. 774-784, 1995 https://doi.org/10.1097/00006123-199510000-00023
  37. Gonzalez, C.F., Cho, Y.I., Ortega, H.V., and Moret, J., 'Intracranial aneurysms: Flow analysis of their origin and progression,' AJNR, Vol. 13, pp. 181-188, 1992
  38. Fourtrakis, G.N., Yonas, H., and Sclabassi, R.J., 'Saccular aneurysm formation in curved and bifurcating arteries,' AJNR, Vol. 20, pp. 1309-1317, 1999
  39. Steiger, H.J., Liepsch, D., Poll, A., and Reulen, H.J., 'Hemodynamic stress in terminal aneurysms,' Acta Nerurochir. (Wien), Vol. 93, pp. 18-23, 1988 https://doi.org/10.1007/BF01409897
  40. Kim, C., Kikuchi, H., Hashimoto, U., Kojima, M., Kang, Y., and Hazama, F., 'Involvement of internal elastic lamina in development of induced cerebral aneurysms in rats,' Stroke, 19, pp. 507-511, 1988 https://doi.org/10.1161/01.STR.19.4.507