Wave Energy Absorption by a Circular Cylinder Oscillating Water Column Device

원통형 진동수주 파력발전장치에 의한 파 에너지 흡수

  • Published : 2002.03.01

Abstract

In this paper, wave energy absorption of OWC(oscillating water column) device is analyzed. The analytic model consists of a partially immersed circular vertical cylinder open at its end and an air turbine connected with the air chamber. The boundary value problem is decomposed into scattering problem related to scattering by an incident wave in the absence of a pressure variation and radiation problem describing the flow due to an oscillating pressure in the absence of an incident wave. By invoking the continuity of an air flow inside the chamber, the oscillating pressure in a chamber is derived. With oscillating pressure, the mean power absorbed by OWC device and the capture width are obtained. In numerical calculation, the induced volume flux across the internal free surface of the chamber in the scattering and radiation problem and the maximum capture width are compared with various design parameters such as radius and submergence depth of chamber and wave conditions. The maximum capture width obtained by choosing the optimal value of turbine constant occurs at the first resonant mode (Helmholtz mode) among the natural frequencies of a circular cylinder chamber.

본 논문에서는 밑이 뚫린 원통형 진동수주 파력발전장치에 의한 파 에너지 흡수효율을 살펴보았다. 경계치 문제는 공기실내의 변동압력이 없을 때 입사파에 의한 산란문제와 공기실 내부의 변동압력에 의한 방사문제로 나누어진다. 공기실 내에서 공기 흐름에 대한 연속방정식을 적용하여 변동압력을 구하였다. 이로부터 진동수주 파력발전장치가 흡수한 시간평균 마력과 에너지 취득 폭을 구하였다. 수치계산에서는 원통형 공기실의 반지름과 잠긴 깊이 그리고 입사파의 주파수를 바꿔가면서 공기실 내부의 유량 변화와 에너지 취득 폭을 살펴보았다. 수학적으로 구한 최적의 터빈 상수를 대입하며 구한 에너지 취득 폭의 최대값은 원통형 공기실의 공진 모드 중에서 첫 번째 공진 모드인 Helmholtz모드에서 나타난다. 따라서 효율적인 파력발전장치를 제작하기 위해서는 설치될 해역의 파의 주파수와 공기실의 고유주파수가 일치되도록 공기실의 형상을 설계하여야 한다.

Keywords

References

  1. 3rd Int. Offshore and Polar Eng. On the study of the performance of OWC due to nonuniform chamber pressure Cho, I.H.;Hong, S.W.
  2. J. Fluid Mech. v.155 The influence of projecting side walls on the hydrodynamic performance of wave-energy devices Count, B.M.;Evans, D.V.
  3. Ann. Rev. Fluid Mech. v.13 Power from water waves Evans, D.V. https://doi.org/10.1146/annurev.fl.13.010181.001105
  4. Proc. 1st Symp. on Wave Energy Utilization Some theoretical aspects of three-dimensional wave energy absorbers Evans, D.V.
  5. J. Offshore Mech. and Arctic Eng. v.119 Efficient calculation of hydrodynamic properties of OWC-type devices Evans, D.V.;Porter, R. https://doi.org/10.1115/1.2829098
  6. J. Fluid Mech. v.46 Wave forces on a circular dock Garret, C.J.C. https://doi.org/10.1017/S0022112071000430
  7. Marine Tech. Prediction of motion and hydrodynamic loads of catamarans Lee, C.M.;Jones, H.D.;Curphy, R.M.
  8. J. Fluid Mech. v.158 Wave-power absorption by an oscillating water column in a channel Malmo, O.;Reitan, A. https://doi.org/10.1017/S0022112085002592
  9. The Applied Dynamics of Ocean Surface waves Mei, C.C.
  10. J. Ship Research v.28 no.4 The added mass and damping of rectangular bodies close to the free surface Newman, J.N.;Sortland, B.;Vinje, T.
  11. The motion of a moored ship in waves no.510 Oortmerssen, G.V.
  12. J. Fluid. Mech. v.150 Wave generation by an oscillating surface-pressure and its application in a wave-energy extraction Sarmento, A.J.N.A.;Falcao, A.F.DE O. https://doi.org/10.1017/S0022112085000234
  13. Proc. of the 8th int. conf. on OMAE On the significance of negative added mass Vinje, T.