DOI QR코드

DOI QR Code

LIPSCHITZ TYPE INEQUALITY IN WEIGHTED BLOCH SPACE Bq

  • Published : 2002.03.01

Abstract

Let B be the open unit ball with center 0 in the complex space $C^n$. For each q>0, B$_{q}$ consists of holomorphic functions f : B longrightarrow C which satisfy sup z $\in$ B $(1-\parallel z \parallel^2)^q\parallel\nabla f(z)\parallel < \infty$ In this paper, we will show that functions in weighted Bloch spaces $B_{q}$ (0 < q < 1) satifies the following Lipschitz type result for Bergman metric $\beta$: |f(z)-f($\omega$)|< $C\beta$(z, $\omega$) for some constant C.

Keywords

References

  1. Dissertationes Math. v.276 Holomorphic Sobolev spaces on the ball F. Beatrous;J. Burbea
  2. Amer. J. Math. v.110 Function theory on Cartan domains and the Berezin-Toeplitz symbol calculus C. A. Berger;L. A. Coburn;K. H. Zhu https://doi.org/10.2307/2374698
  3. J. Funct. Anal. v.93 BMO in the Bergman metric on bounded symmetric domain D. Bekolle;C. A. Berger;L. A. Coburn;K. H. Zhu https://doi.org/10.1016/0022-1236(90)90131-4
  4. Trans. Amer. Math. Soc. v.285 Cyclic vectors in the Dirichlet space L. Brown;A. Shields
  5. Canad. J. Math. v.27 Holomorphic mappings of the hyperbolic space into the complexEuclidean space and Bloch theorem K. T. Hahn https://doi.org/10.4153/CJM-1975-053-0
  6. J. Math. Anal. Appl. v.175 Tangential boundary behavior of M-harmonic Besov functions in the unit ball K. T. Hahn;E. H. Youssfi https://doi.org/10.1006/jmaa.1993.1163
  7. J. Korean Math. Soc. v.35 Weighted Bloch spaces in Cⁿ K. T. Hahn;K. S. Choi
  8. Ph.D. thesis. Mobius invariant spaces on the unit ball M. Peleso
  9. Function theory in the unit ball of Cⁿ W. Rudin
  10. Tangential limits and exceptional sets for holomorphic Besov functions in the unit ball in Cⁿ K. Shaw
  11. Amer. J. Math. v.98 Bounded Toeplitz operators on H¹ and applications of the duality between H¹ and the functions of bounded mean oscillation D. Stegenga https://doi.org/10.2307/2373807
  12. Bull. London Math. Soc. v.12 Bloch functions in several complex variables I R. M. Timoney https://doi.org/10.1112/blms/12.4.241
  13. J. Funct. Anal. v.87 Multipliers of BMO in the Bergman metric with applications to Toeplitz operators K. H. Zhu https://doi.org/10.1016/0022-1236(89)90003-7
  14. J. Math. Anal. Appl. v.157 Analytic Besov spaces https://doi.org/10.1016/0022-247X(91)90091-D
  15. Rocky Mountain J. Math. v.23 Bloch type spaces of analytic functions https://doi.org/10.1216/rmjm/1181072549

Cited by

  1. TOEPLITZ TYPE OPERATOR IN ℂn vol.27, pp.4, 2014, https://doi.org/10.14403/jcms.2014.27.4.697
  2. NOTES ON THE SPACE OF DIRICHLET TYPE AND WEIGHTED BESOV SPACE vol.26, pp.2, 2013, https://doi.org/10.14403/jcms.2013.26.2.393