An Active Candidate Set Management Model on Association Rule Discovery using Database Trigger and Incremental Update Technique

트리거와 점진적 갱신기법을 이용한 연관규칙 탐사의 능동적 후보항목 관리 모델

  • Hwang, Jeong-Hui (Dept. of Computer Science, Chungbuk National University) ;
  • Sin, Ye-Ho (Dept. of Computer Science, Chungbuk National University) ;
  • Ryu, Geun-Ho (Dept. of Computer Science, Chungbuk National University)
  • 황정희 (충북대학교 전자계산학과) ;
  • 신예호 (충북대학교 전자계산학과) ;
  • 류근호 (충북대학교 전자계산학과)
  • Published : 2002.02.01

Abstract

Association rule discovery is a method of mining for the associated item set on large databases based on support and confidence threshold. The discovered association rules can be applied to the marketing pattern analysis in E-commerce, large shopping mall and so on. The association rule discovery makes multiple scan over the database storing large transaction data, thus, the algorithm requiring very high overhead might not be useful in real-time association rule discovery in dynamic environment. Therefore this paper proposes an active candidate set management model based on trigger and incremental update mechanism to overcome non-realtime limitation of association rule discovery. In order to implement the proposed model, we not only describe an implementation model for incremental updating operation, but also evaluate the performance characteristics of this model through the experiment.

연관규칙 탐사는 지지도와 신뢰도를 바탕으로 연관성 있는 강한 항목들을 탐사한다. 탐사된 연관규칙은 장바구니 분석 등과 같이 전자 상거래 및 대형 소매점 등의 판매 패턴에 대한 분석에 유용하게 적용될 수 있다. 이와 같은 연관규칙 탐사는 대규모로 축적되어 트랜잭션 데이터를 대상으로 하는 기법으로서 대규모 데이터에 대한 반복적 스캔연산을 수반한다. 그러므로 매우 높은 연산 부하를 안고 있으며 이로 인해 동적 환경에서 실시간 제한사항을 탐사에 대한 시도를 하지 못하고 있다. 따라서 이 논문에서는 연관규칙 탐사의 비 실시간적 제한사항을 위하여 트리거와 점진적 갱신 기법을 이용한 능동적 후보항목 관리 모델을 제안하였다. 아울러 제안 모델을 구현하기 위해 점진적 갱신 기법을 이용한 능동적 후보항목 관리 모델을 제한하였다. 아울러 제안 모델을 구현하기 위해 점진적 갱신 연산의 구현 모델을 제시하고 이의 구현 및 실험을 통해 성능 특성을 분석하였다.

Keywords

References

  1. R. Agrawal, R. Srikant, 'Fast Algorithms for Mining Association Rules,' Proc. of the 20th Int'l Conference on Very Large Databases, 1994
  2. R, Agrawal, K. Shim, 'Developing Tightly-Coupled Data Mining Applications on a Relational Database System,' Proc. of the 2nd Int'l Conference on Knowledge Discovery in Databases and Data Mining, Portland, Oregon, August, 1996
  3. J. Han, Y. Fu, K. Koperski, W. Wang, and 0. Zaiane, 'DMQL: A Data Mining Query Language for Relational Databases,' 1996 SIGMOD'96 Workshop, on Research Issues on Data Mining and Knowledge Discovery (DMKD'96), Montreal, Canada, June 1996
  4. S. Sarawagi, S. Thomas, R. Agrawal, 'Integrating association rule mining with databases: alternatives and implications,' Proc. of the ACM SIGMOD Int'l Conference on Management of Data, Seattle, Washington, June 1998 https://doi.org/10.1145/276304.276335
  5. D. Cheung, J. Han, V. Ng and C.Y. Wong, 'Maintenance of Discovered Association Rules in Large Databases: An Incremental Updating Technique,' Proc. of 1996 Int'l Conf. on Data Engineering (ICDE'96), New Orleans, Louisiana, USA, 1996 https://doi.org/10.1109/ICDE.1996.492094
  6. Jong Soo Park, Ming-Syan Chen, Philip S. Yu, 'An Effective Hash Based Algorithm for Mining Association Rules,' SIGMOD Conference 1995 https://doi.org/10.1145/223784.223813
  7. Jennifer Widom, Stefano Ceri, 'Chapter 1 : Introduction to Active Database Systems,' Active Database Systems (Triggers and Rules For Advanced Database Processing), Morgan Kaufmann Publishers, 1996
  8. Norman W. Paton, Andrew Dinn, M. Howard Williams, 'Chapter 4 : Optimization,' Active Rules in Database Systems, Springer, 1999
  9. Umeshwar Dayal, Barbara T. Blaustein, Alejandro P. Buchmann, Upen S. Chakravarthy, M. Hsu, R. Ledin, Dennis R. McCarthy, Amon Rosenthal, Sunil K. Sarin, Michael J. Carey, Miron Livny, Rajiv Jauhari, 'The HiPAC Project: Combining Active Databases and Timing Constraints,' SIGMOD Record 17(1), 1988 https://doi.org/10.1145/44203.44208
  10. Eric N. Hanson, 'Rule Condition Testing and Action Execution in Ariel,' SIGMOD Conference 1992 https://doi.org/10.1145/130283.130295
  11. J. S. Park, Y, H, Shin, K. W. Nam, K. H. Ryu, 'Incremental Condition Evaluation for Active Temporal Rule,' Journal of KISS, (B) 26(4). 1999
  12. ANSI X3H2-99-079/WG3:YGJ-011 (ANSI/ISO Working Drft) Foundation(SQL/Foundation), March, 1999
  13. Spyros Potamianos, Michael Stonebraker, 'Chapter 2 : The POSTGRES Rules System,' Active Database Systems (Triggers and Rules For Advanced Database Processing), Morgan Kaufmann Publishers, 1996
  14. R. Agrawal, G. Psaila, 'Active Data Mining,' Proc. of the 1st Int'l Conference on Knowledge Discovery and Data Mining, Montreal, August 1995
  15. J. Han, S. Nishio and H. Kawano, 'Knowledge Discovery in Object-Oriented and Active Databases,' F. Fuchi and T. Yokoi (eds.), Knowledge Building and Knowledge Sharing, Ohmsha, Ltd. and IOS Press, 1994
  16. C. Janiolo, S. Ceri, C. Faloutsos, R. T. Snodgrass, V. S Subrahmanian, R. Zicari, 'Chapter 4 : Design Principles for Active Rules,' Advanced Database Systems, Morgan Kaufmann Publishers, 1997
  17. Y. J Lee, S. B. Seo, K. H. Ryu, 'Discovering Temporal Relation Rules from Temporal Interval Data,' to be submitted in KISS, 2001
  18. Oracle 8i Development Guide : PL/SQL, Oracle Press, 2000