DOI QR코드

DOI QR Code

Mutations within the Putative Active Site of Heterodimeric Deoxyguanosine Kinase Block the Allosteric Activation of the Deoxyadenosine Kinase Subunit

  • Park, In-Shik (Faculty of Food Science, Dong-A University) ;
  • Ives, David H. (Department of Biochemistry, The Ohio State University)
  • Published : 2002.03.31

Abstract

Replacement of the Asp-84 residue of the deoxyguanosine kinase subunit of the tandem deoxyadenosine kinase/deoxyguanosine kinase (dAK/dGK) from Lactobacillus acidophilus R-26 by Ala, Asn, or Glu produced increased $K_m$ values for deoxyguanosine on dGK. However, it did not seem to affect the binding of Mg-ATP. The Asp-84 dGK replacements bad no apparent effect on the binding of deoxyadenosine by dAK. However, the mutant dGKs were no longer inhibited by dGTP, normally a potent distal end-product inhibitor of dGK. Moreover, the allosteric activation of dAK activity by dGTP or dGuo was lost in the modified heterodimeric dAK/dGK enzyme. Therefore, it seems very likely that Asp-84 participates in dGuo binding at the active site of the dGK subunit of dAK/dGK from Lactobacillus acidophilus R-26.

Keywords

References

  1. Amer, E. S. J. and Eriksson, S. (1995) Mammalian deoxyribonucleoside kinases. Pharmacol. Ther. 67, 155-186. https://doi.org/10.1016/0163-7258(95)00015-9
  2. Balasubramaniam, N. K., Veerisetty, V. and Gentry, G. A. (1990) Herpesviral deoxythymidine kinases contain a site analogous to the phosphoryl-binding arginine-rich region of porcine adenylate kinase; Comparison of secondary structure predictions and conservatidn; J. Gen. Virol. 71, 2979-2987. https://doi.org/10.1099/0022-1317-71-12-2979
  3. Bolotin, A., Wincker, P., Mauger, S., Jaillon, O., Marlarrna, K., Weissenbach, .J., Ehrlich, S. D. and Sorokin, A. (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. Lactis IL 1403. Genome Res. 11, 731-753. https://doi.org/10.1101/gr.GR-1697R
  4. Brown, D. G., Visse, R., Sandhu, G., Davies, A., Rizkallah, P. J., Melitz, C., Summers, W. C. and Sanderson, M. R. (1995) Crystal structures of the thymidine kinase from herpes simplex virus type-I in complex with deoxythymidine and Ganciclovir. Nature Struct. Biol. 2, 876-881. https://doi.org/10.1038/nsb1095-876
  5. Dandekar, T., Huynen, M., Regula, J. T., Ueberle, B., Zimmermann, C. U., Andrade, M. A., Doerks, T., Sanchez-Pulido, L., Snel, B., Suyama, M., Yuan, Y. P., Hermann, R. and Bork, P. (2000) Re-annotating the Mycoplasma pneumoniae genome sequence: .adding value, function and reading frames. Nucleic Acids Res. 8, 3278-3288
  6. Ferreri,. J. J., McShan, W. M., Adjic, D., Savic, D., Savic, G., Lyon, K., Primeaux, C., Sezate, S. S., Surorov, A.N., Lai, H., Lin, S., Qian, Y., Jia, H. G., Najar, F. Z., Ren, Q., Zhu, H., Song, L., White, J., Yuan, X., Clifton, S. W., Roe, B. A. and McLaUghlin, R. E. (2001) Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc. Natl. Acad. Sci. USA 98, 4658-4663. https://doi.org/10.1073/pnas.071559398
  7. Fraser, C. M.;Casjens, S., Huang, W. M., Sutton, G. G., Clayton, R., Lathigre, R., White, O., Ketchum, K. A., Dodson, R., Hickey, E. K, Gwinn, M., Dougherty, B., Tomb, J. F., Fleischmann, R. D., Richardson, D., Peterson, J., Kerlavage, A. R., Quackenbush, J., Salzberg, S., Hanson, M., Vugt, R. V., Palmer, N., Adams, M. D., Horst, K., Roberts, K., Hatch, B., Smith, H. O. and Venter, J. C. (1997) Genomic sequence of a Lyme disease spirochaete, Borrlia burgdoiferi, Nature 390, 580-586. https://doi.org/10.1038/37551
  8. Gentry, G. A. (1992) Vrral thymidine kinases and their relatives. Pharmacol. Ther. 54, 319-355. https://doi.org/10.1016/0163-7258(92)90006-L
  9. Glass, J. I., Lefkowitz, E. J., Glass, J. S., Heiner, C. R., Chen, E. Y. and Cassell, G. H. (2000) The complete sequence of the mucosal pathogen Ureaplasma urealyticurn. Nature 407, 757-762. https://doi.org/10.1038/35037619
  10. Guo, S., Ma, N. and Ives, D. H. (1997) cis-Active ras G2-1ike sequence implipated in the heterotropic activation of the deoxyadenosine kinase of Lactobacillus acidophilus R-26. J. Biol. Chem. 272, 6890-6897. https://doi.org/10.1074/jbc.272.11.6890
  11. Hong, Y. S., Ma, G. T. and Ives, D. H. (1995) Directed mutagenesis. of deoxyguanosine site at arginine 79 up-regulates turnover on deoxyadenosine kinase subunit of heterodimeric enzyme from Lactobacillus acidophilus R-26. J. Biol. Chem. 270, 6602-6606. https://doi.org/10.1074/jbc.270.12.6602
  12. Huang, C., Nixon, P. F. and Duggleby, R. G. (1999) Effect of mutagenesis of V111 and L112 on the substrate specificity of Zymomonas mobilis pyruvate decarboxylase. J. Biochem. Mol. BioI. 32, 39-44.
  13. Ikeda, S., Chakravarty, R. and Ives, D. H. (1986) Multisubstrate analogs for deoxynucleoside kinases. Triphosphate end products and synthetic bisubstrate analogs exhibit identical modes of binding and are useful probes for distinguishing kinetic mechanisms. J. Biol. Chem 261, 15836-15843.
  14. Ikeda, S. and Ives, D. H. (1994) Heterodirneric deoxyguanosine kinase/deoxyadenosine kinase of Lactobacillus acidophilus R- 26: Heterotropic activation of deoxyadenosine kinase subunit implicated by limited proteolysis and affinity labeling. Biochemistry 33, 13373-13381. https://doi.org/10.1021/bi00249a025
  15. Ives, D. H. (1984) A new system for washing ion-exchange paper disks used in radiochemical enzyme assays. Anal. Biochem. 136, 416-420. https://doi.org/10.1016/0003-2697(84)90237-9
  16. Ives, D. H. and Ikeda, S. (1998) Life on the Salvage Path: The Deoxynucleoside Kinases of Lactobacillus acidophilus. R-26. Prog. Nucleic Acid Res. Mol. Biol. 59, 205-255.
  17. Johansson, M. and Karlsson, A. (1996) Cloning and expression of human deoxyguanosine kinase cDNA. Proc. Natl. Acad. Sci. USA 93, 7258-7262. https://doi.org/10.1073/pnas.93.14.7258
  18. Kim, S. I., Kim, S., Leem, S., Oh, K., Kim, S. and Park, Y. (2001) Site-directed mutagenesis of two cysteines (155,202) in catechol 1,2-dioxygenase I1 of Acinetobacter lwoffii k24. J. Biochem Mol. Biol. 34, 172-175.
  19. Kunkel, T. A. (1985) Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Natl. Acad. Sci. USA 82, 488-492. https://doi.org/10.1073/pnas.82.2.488
  20. Lee, Y. and Cho, Y. (2001) Mutation of cysteine-115 to alanine in Nicotiana glutinosa ornithine decarboxylase reduces enzyme activity. J. Biochem. Mol. BioI. 34, 472-477.
  21. Ma, G. T., Hong, Y. S. and Ives, D. H. (1995) Cloning and expression of the heterodimeric deoxyguanosine kinase/deoxyadenosine kinase of Lactobacillus acidophilus R-26. J. Biol. Chem. 270, 6595-6601. https://doi.org/10.1074/jbc.270.12.6595
  22. Ma, N., Ikeda, S., Guo, S., Fieno, A., Park, I., Grimme, S., Ikeda, T. and Ives, D. H. (1996) Deoxycytidine kinase and deoxyguanosine kinase of Lactobacillus acidophilus R-26 are co-linear products of a single gene. Proc. Natl. Acad. Sci. USA 93, 14385-14390. https://doi.org/10.1073/pnas.93.25.14385
  23. Sanger, F., Nicklen, S. and Coulson, A. R. (1977) DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463-5467. https://doi.org/10.1073/pnas.74.12.5463
  24. White, O., Eisen, J. A., Heidelberg, J. F., Hickey, E. K., Peterson, J. D., Dodson, R. J., Haft, D. H., Gwinn, M. L., Nelson, W. C., Richardson, D. L., Moffat, K. S., Qin, H., Jiang, L., Pamphile, W., Crosby, M., Shen, M., Vamathevan, J. J., Lam, P., McDonald, L., Utterback, T., Zalewski, C., Makarova, K. S., Aravind, L., Daly, M. J., Minton, K. W., Fleischmann, R. D., Ketchum, K. A., Nelson, K. E., Salzberg, S., Smith, H. O., Venter, J. C. and Fraser, C. M. (1999) Genome sequence of the radio-resistant bacterium Deinococcus radiodurans R1. Science 286, 1571-1577. https://doi.org/10.1126/science.286.5444.1571