References
- Abubakar, A., Saito, T., Kitazawa, H., Kawai, Y. and Itoh, T. (1998) Structural analysis of new antihypertensive peptides derived from cheese whey protein by proteinase K digestion. J. Dairy Sci. 81, 3131-3138. https://doi.org/10.3168/jds.S0022-0302(98)75878-3
- Amhar, A., Saito, T., Aimar, M. V. and Itoh, T. (1996) New derivation of the inhibitory activity against angiotensin converting enzyme (ACE) from sweet cheese whey. Tohoku J. Agric. Res. 47, 1-8. https://doi.org/10.1071/AR9960001
- Ariyoshi, Y. (1993) Angiotensin-converting enzyme inhibitors derived from food proteins. Trends Food Sci. Technol. 4, 139-144. https://doi.org/10.1016/0924-2244(93)90033-7
- Astawan, M., Wahyuni, M., Yasuhara, T., Yamada, K., Tadokoro, T. and Maekawa, A. (1995) Effects of angiotensin I-converting enzyme inhibitory substances derived from Indonesian driedsalted fish on blood pressure of rats. Biosci. Biotech. Biochem. 59, 425-429. https://doi.org/10.1271/bbb.59.425
- Byun, H. G. and Kim, S. K. (2001) Purification and characterization of angiotensin I converting enzyme inhibitory peptides from Alaskan pollack (Theragra chalcogramma) skin. Proc. Biochem. 36, 1155-1162. https://doi.org/10.1016/S0032-9592(00)00297-1
- Cheung, H. S., Wang, F. I., Ondetti, M. A., Sabo, E. F. and Cushman, D. W. (1980) Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence. J. Biol. Chem. 225, 401-407.
- Cushman, D. W. and Cheung, H. S. (1971) Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem Pharmacol. 20, 1637-1648. https://doi.org/10.1016/0006-2952(71)90292-9
- Cushman, D. W., Cheung, H. S., Sabo, E. F. and Ondetti, M. A. (1977) Design of potent competitive inhibitors of angiotensin-converting enzyme. Carboxyalkanoyl and mercaptoalkanoyl amino acids. Biochemistry 16, 5484-5491. https://doi.org/10.1021/bi00644a014
- Cushman, D. W., Cheung, H. S., Sabo, E. F. and Ondetti, M. A. (1979) Development of specific inhibitors of angiotensin I converting enzyme (kinase II). Fed. Proc. 38, 2778-2782.
- Cushman, D. W., Cheung, H. S., Saba, E. F. and Ondetti, M. A. (1981) Angiotensin converting enzyme inhibitors: Evolution of a new class of antihypertensive drugs; in Angiotensin Converting Enzyme Inhibitors, Horovitz, Z. P. (ed.), pp. 3-25, Urban & Schwarzenberg, Inc., Baltimore, Maryland.
- Cushman, D. W., Ondetti, M. A., Gordon E. M., Natarajan, S., Karenewsky, D. S., Krapcho, J. and Petrillo, E. W. Jr. (1987) Rational design and biochemical utility of specific inhibitors of angiotensin-converting enzyme. J. Cardiovascular Pharmacology 10, S17-S30.
- Fujita, H. and Yoshikawa, M. (1999) LKPNM: A prodrug-type ACE inhibitory peptide derived from fish protein. Immunopharmacology 44, 123-127. https://doi.org/10.1016/S0162-3109(99)00118-6
- Karaki, H., Doi, K., Sugano, S., Uchiwa, H., Sugai, R., Murakami, U. and Takemoto, S. (1990) Antihypertensive effect of tryptic hydrolysate of milk casein in spontaneously hypertensive rats. Comp. Biochem. Physiol. 96, 367-371.
- Kinoshita, E., Yamakoshi, J. and lkuchi, M. (1993) Purification and identification of an angiotensin I-converting enzyme inhibitor from soy sauce. Biosci. Biotech. Biochem. 57, 1107-1110. https://doi.org/10.1271/bbb.57.1107
- Kiriyama, S. and Arai, S. (1990) Peptide Nutrient, Hokkaido University Press, Sapporo, Hokkaido.
- Kohama, Y., Matsumoto, S., Oka, H., Teramoto, T., Okabe, M. and Mimura, T. (1988) Isolation of angiotensin-converting enzyme inhibitor from tuna muscle. Biochem. Biophys. Res. Commun. 155, 332-337. https://doi.org/10.1016/S0006-291X(88)81089-1
- Maruyama, S., Mitachi, H., Tanaka, H., Tomizuka, N. and Suzuki, H. (1987) Studies on the active site and antihypertensive activity of angiotensin I-converting enzyme inhibitors derived from casein. Agric. BioI. Chem. 51, 1581-1586. https://doi.org/10.1271/bbb1961.51.1581
- Maruyama, S., Miyoshi, S., Kaneko, T. and Tanaka, H. (1989) Angiotensin I-converting enzyme inhibitory activities of synthetic peptides related to the tandem repeated sequence of a maize endosperm protein. Agric. BioI. Chem. 53, 1077-1081. https://doi.org/10.1271/bbb1961.53.1077
- Matsumura, N., Fujii, M., Takeda, Y., Sugita, K and Shimizu, T. (1993) Angiotensin I-converting enzyme inhibitory peptides derived from bonito bowels autolysate. Biosci. Biotech. Biochem. 57, 695-697. https://doi.org/10.1271/bbb.57.695
- Matthews, D. M. and Payne, J. W. (1980) Transmembrane transport of small peptides. Curr. Top. Membr. Transp. 14, 331-425. https://doi.org/10.1016/S0070-2161(08)60119-7
- Mesel, H. (1997) Biochemical properties of bioactive peptides derived from milk proteins: Potential nutraceuticals for food and pharmaceutical applications. Livestock Production Science 50, 125-138. https://doi.org/10.1016/S0301-6226(97)00083-3
- Miyoshi, S., Ishikawa, H., Kaneko, T., Fukui, F., Tanaka, H. and Maruyama, S. (1991) Structures and activity of angiotensin-converting enzyme inhibitors in an a-zein hydrolysate. Agric. Biol. Chem. 55, 1313-1318. https://doi.org/10.1271/bbb1961.55.1313
- Okamoto, A., Ranagata, H., Kawamura, Y. and Yanagida, F. (1995) Anti hypertensive substances in fennented soybean, natto. Plant Foods Hum. Nutr. 47, 39-47. https://doi.org/10.1007/BF01088165
- Ondetti, M. A. and Cushman, D. W. (1982) Enzymes of the reninangiotensin system and their inhibitors. Ann. Rev. Biochem. 51, 283-308. https://doi.org/10.1146/annurev.bi.51.070182.001435
- Ondetti, M. A., Rubin, B. and Cushman, D. W. (1977) Design of specific inhibitors of lmgiotensin converting enzyme: New class of orally active antihypertensive agents. Science 196, 441-444. https://doi.org/10.1126/science.191908
- Saito, Y., Wanezaki, K., Kawato, A. and Imayasu, S. (1994) Structure and activity of angiotensin I converting enzyme inhibitory peptides from snake and snakelees. Biosci. Biotech. Biochem. 58, 1767-1771. https://doi.org/10.1271/bbb.58.1767
- Skggs, L. T., Marsh, W. H., Kahn, J. R. and Shumway, N. P. (1954) The existence of two forms of hypertension. J. Exp. Med. 99, 275-282. https://doi.org/10.1084/jem.99.3.275
- Ukeda, H., Matsuda, H., Osajirna, K., Matsufuji, H., Matsui, T. and Osajima, Y. (1992) Peptides from peptic hydrolyzate of heated sardine meat that inhibit angiotensin I converting enzyme. Nippon Nogeikagaku Kaishi 66, 25-29. https://doi.org/10.1271/nogeikagaku1924.66.25
- Walter, E., Kissel, T. and Amidon, G. L. (1996) The intestinal peptide carrier: A potential transport system for small peptide derived drugs. Advanced Drug Delivery Reviews 20, 33-58. https://doi.org/10.1016/0169-409X(95)00129-U
- Yamamoto, N. (1997) Antihypertive peptides derived from food proteins. Peptide Sci. 43, 129-134. https://doi.org/10.1002/(SICI)1097-0282(1997)43:2<129::AID-BIP5>3.0.CO;2-X
- Yamamoto, N., Akino, A. and Takano, T. (1994) Antihypertensive effect of the peptides derived from casein by an extracellular proteinase from Lactobacillus helveticus CP790. J. Dairy Sci. 77, 917-922. https://doi.org/10.3168/jds.S0022-0302(94)77026-0
- Yang, H. Y. T., Erdos, E. G. and Levin Y. (1970) A dipeptidyl carboxypeptidase that converts angiotensin I and inactivates bradykinin. Biochim Biophys. Acta. 214, 374-376. https://doi.org/10.1016/0005-2795(70)90017-6
Cited by
- Radical-scavenging activity, ACE-inhibiting capability and identification of rapeseed albumin hydrolysate vol.2, pp.2, 2013, https://doi.org/10.1016/j.fshw.2013.05.002
- Novel angiotensin I-converting enzyme inhibitory peptides derived from an edible mushroom, Pleurotus cystidiosus O.K. Miller identified by LC-MS/MS vol.13, pp.1, 2013, https://doi.org/10.1186/1472-6882-13-313
- The development of angiotensin I-converting enzyme inhibitor derived from chicken bone protein vol.79, pp.1, 2008, https://doi.org/10.1111/j.1740-0929.2007.00507.x
- Angiotensin I-Converting Enzyme Inhibitory Peptides of Chia (Salvia hispanica) Produced by Enzymatic Hydrolysis vol.2013, 2013, https://doi.org/10.1155/2013/158482
- Nutraceuticals and Bioactive Components from Fish for Dyslipidemia and Cardiovascular Risk Reduction vol.14, pp.6, 2016, https://doi.org/10.3390/md14060113
- Rational Design of Angiotensin-I-Converting Enzyme Inhibitory Peptides by Integrating in silico Modeling and an in vitro Assay vol.8, pp.7, 2013, https://doi.org/10.1002/cmdc.201300132
- Characterization and comparative assessment of antioxidant and ACE inhibitory activities of thornback ray gelatin hydrolysates vol.13, 2015, https://doi.org/10.1016/j.jff.2014.12.042
- Production and purification of glucosamine and angiotensin-I converting enzyme (ACE) inhibitory peptides from mushroom hydrolysates vol.36, 2017, https://doi.org/10.1016/j.jff.2017.06.049
- Simultaneous monitoring of twelve angiotensin I converting enzyme inhibitory peptides during enzymatic β-casein hydrolysis using Lactobacillus peptidases vol.30, pp.2, 2013, https://doi.org/10.1016/j.idairyj.2012.12.003
- Stability of ACE inhibitory ham peptides against heat treatment and in vitro digestion vol.161, 2014, https://doi.org/10.1016/j.foodchem.2014.03.117
- Angiotensin I–converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects vol.24, pp.7, 2004, https://doi.org/10.1016/S0271-5317(04)00058-2
- Antihypertensive peptides and γ-aminobutyric acid from prozyme 6 facilitated lactic acid bacteria fermentation of soymilk vol.41, pp.6, 2006, https://doi.org/10.1016/j.procbio.2005.12.026
- Food-Originating ACE Inhibitors, Including Antihypertensive Peptides, as Preventive Food Components in Blood Pressure Reduction vol.13, pp.2, 2014, https://doi.org/10.1111/1541-4337.12051
- Glyprolines in regulatory tripeptides vol.1, pp.3, 2007, https://doi.org/10.1134/S1819712407030014
- In silico assessment: Suggested homology of chickpea (Cicer arietinum L.) legumin and prediction of ACE-inhibitory peptides from chickpea proteins using BLAST and BIOPEP analyses vol.49, pp.1, 2012, https://doi.org/10.1016/j.foodres.2012.07.006
- Angiotensin-Converting Enzyme Inhibitory Activity of Enzymatic Hydrolysates of Crassostrea gigas (Oyster) vol.22, pp.2, 2012, https://doi.org/10.5352/JLS.2012.22.2.220
- ANTIOXIDANT, ACE INHIBITORY ACTIVITIES AND FUNCTIONAL PROPERTIES OF EGG WHITE PROTEIN HYDROLYSATE vol.36, pp.4, 2012, https://doi.org/10.1111/j.1745-4514.2011.00555.x
- Membrane Bioreactor Technology for the Development of Functional Materials from Sea-Food Processing Wastes and Their Potential Health Benefits vol.1, pp.4, 2011, https://doi.org/10.3390/membranes1040327
- Chemical characterization and anti-anaemia activity of fish protein hydrolysate fromSaurida elongata vol.85, pp.12, 2005, https://doi.org/10.1002/jsfa.2219
- Peptides with angiotensin I converting enzyme (ACE) inhibitory activity generated from porcine skeletal muscle proteins by the action of meat-borne Lactobacillus vol.89, 2013, https://doi.org/10.1016/j.jprot.2013.06.023
- Antioxidant and angiotensin converting enzyme (ACE) inhibitory activities of cocoa (Theobroma cacao L.) autolysates vol.44, pp.1, 2011, https://doi.org/10.1016/j.foodres.2010.10.017
- An Antihypertensive Peptide from Tilapia Gelatin Diminishes Free Radical Formation in Murine Microglial Cells vol.59, pp.22, 2011, https://doi.org/10.1021/jf202837g
- Effect of Freeze-Drying Process on the Property of Angiotensin I-Converting Enzyme Inhibitory Peptides in Grey Oyster Mushrooms vol.31, pp.13-14, 2013, https://doi.org/10.1080/07373937.2013.779584
- Isolation and characterisation of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide from the algae protein waste vol.115, pp.1, 2009, https://doi.org/10.1016/j.foodchem.2008.12.019
- WITHDRAWN: Bioactive peptides derived from meat proteins 2012, https://doi.org/10.1016/j.peptides.2012.07.007
- Ultrasonic Treatment Effect on Enzymolysis Kinetics and Activities of ACE-Inhibitory Peptides from Oat-Isolated Protein vol.10, pp.3, 2015, https://doi.org/10.1007/s11483-014-9375-y
- Identification of an antihypertensive peptide derived from chicken bone extract vol.79, pp.6, 2008, https://doi.org/10.1111/j.1740-0929.2008.00584.x
- Characterisation of the hydrolytic specificity of Aspergillus niger derived prolyl endoproteinase on bovine β-casein and determination of ACE inhibitory activity vol.156, 2014, https://doi.org/10.1016/j.foodchem.2014.01.056
- Dietary fish protein hydrolysates containing bioactive motifs affect serum and adipose tissue fatty acid compositions, serum lipids, postprandial glucose regulation and growth in obese Zucker fa/fa rats vol.116, pp.08, 2016, https://doi.org/10.1017/S0007114516003548
- Effect of pretreatment on enzymatic hydrolysis of bovine collagen and formation of ACE-inhibitory peptides vol.141, pp.3, 2013, https://doi.org/10.1016/j.foodchem.2013.05.058
- Modeling the angiotensin-converting enzyme inhibitory activity of peptide mixtures obtained from cheese whey hydrolysates using concentration-response curves vol.28, pp.5, 2012, https://doi.org/10.1002/btpr.1587
- Biological Activities of Phellinus linteus Mycelium Culture with Cassiae Semen Extract on β-Glucuronidase Inhibitory Activity vol.25, pp.3, 2012, https://doi.org/10.9799/ksfan.2012.25.3.620
- Bioactive peptides from shrimp shell processing discards: Antioxidant and biological activities vol.34, 2017, https://doi.org/10.1016/j.jff.2017.04.013
- Review on the Angiotensin-I-Converting Enzyme (ACE) Inhibitor Peptides from Marine Proteins vol.169, pp.3, 2013, https://doi.org/10.1007/s12010-012-0024-y
- In vitro simulated gastrointestinal digestion of donkeys’ milk. Peptide characterization by high performance liquid chromatography–tandem mass spectrometry vol.24, pp.2, 2012, https://doi.org/10.1016/j.idairyj.2011.04.014
- Identification of ACE-inhibitory peptides fromPhaseolus vulgarisafterin vitrogastrointestinal digestion vol.66, pp.7, 2015, https://doi.org/10.3109/09637486.2015.1088940
- Composition and properties of peptides that survive standardised in vitro gastro-pancreatic digestion of bovine milk vol.61, 2016, https://doi.org/10.1016/j.idairyj.2016.06.002
- A Review of Potential Marine-derived Hypotensive and Anti-obesity Peptides vol.56, pp.1, 2016, https://doi.org/10.1080/10408398.2012.753866
- Identification of Bioactive Peptide Sequences from Amaranth (Amaranthus hypochondriacus) Seed Proteins and Their Potential Role in the Prevention of Chronic Diseases vol.14, pp.2, 2015, https://doi.org/10.1111/1541-4337.12125
- Peptides fonctionnels marins vol.5, pp.S1, 2007, https://doi.org/10.1007/s10298-007-0230-x
- Peptide identification in a porcine gelatin prolyl endoproteinase hydrolysate with angiotensin converting enzyme (ACE) inhibitory and hypotensive activity vol.34, 2017, https://doi.org/10.1016/j.jff.2017.04.018
- Potential of chicken by-products as sources of useful biological resources vol.33, pp.3, 2013, https://doi.org/10.1016/j.wasman.2012.08.001
- Impact of ultrafiltration and nanofiltration of an industrial fish protein hydrolysate on its bioactive properties 2010, https://doi.org/10.1002/jsfa.4020
- Blood pressure lowering effects of Australian canola protein hydrolysates in spontaneously hypertensive rats vol.55, 2014, https://doi.org/10.1016/j.foodres.2013.11.015
- A study ofin vivoantihypertensive properties of enzymatic hydrolysate from chicken leg bone protein vol.79, pp.5, 2008, https://doi.org/10.1111/j.1740-0929.2008.00571.x
- Characterization and identification of angiotensin I-converting enzyme (ACE) inhibitory peptides derived from tilapia using Virgibacillus halodenitrificans SK1-3-7 proteinases vol.14, 2015, https://doi.org/10.1016/j.jff.2015.01.050
- Purification and identification of angiotensin converting enzyme inhibitory peptides from beef hydrolysates vol.69, pp.4, 2005, https://doi.org/10.1016/j.meatsci.2004.10.014
- Simultaneous Determination of 8 Small Antihypertensive Peptides with Tyrosine at the C-Terminal inLaminaria japonicaHydrolysates by RP-HPLC Method vol.40, pp.3, 2016, https://doi.org/10.1111/jfpp.12628
- Cardioprotective Cryptides Derived from Fish and Other Food Sources: Generation, Application, and Future Markets vol.63, pp.5, 2015, https://doi.org/10.1021/jf505019z
- Evaluation of the Hypotensive Potential of Bovine and Porcine Collagen Hydrolysates vol.11, pp.3, 2008, https://doi.org/10.1089/jmf.2007.0573
- Predicted Release and Analysis of Novel ACE-I, Renin, and DPP-IV Inhibitory Peptides from Common Oat (Avena sativa) Protein Hydrolysates Using in Silico Analysis vol.6, pp.12, 2017, https://doi.org/10.3390/foods6120108
- Design, Synthesis, and Evaluation of Novel Phenolic Acid/Dipeptide/Borneol Hybrids as Potent Angiotensin Converting Enzyme (ACE) Inhibitors with Anti-hypertension Activity vol.22, pp.11, 2017, https://doi.org/10.3390/molecules22111739
- Separation and Characterization of Antioxidative and Angiotensin Converting Enzyme Inhibitory Peptide from Jellyfish Gonad Hydrolysate vol.23, pp.1, 2018, https://doi.org/10.3390/molecules23010094
- Peptidomic Analysis of ACE Inhibitory Peptides Extracted from Fermented Goat Milk pp.1573-3904, 2019, https://doi.org/10.1007/s10989-018-9771-0