DOI QR코드

DOI QR Code

Molecular Dynamics Simulation Studies of Benzene, Toluene, and p-Xylene in a Canonical Ensemble


Abstract

We have presented the results of thermodynamic, structural and dynamic properties of liquid benzene, toluene, and p-xylene in canonical (NVT) ensemble at 293.15 K by molecular dynamics (MD) simulations. The molecular model adopted for these molecules is a combination of the rigid body treatment for the benzene ring and an atomistically detailed model for the methyl hydrogen atoms. The calculated pressures are too low in the NVT ensemble MD simulations. The various thermodynamic properties reflect that the intermolecular interactions become stronger as the number of methyl group attached into the benzene ring increases. The pronounced nearest neighbor peak in the center of mass g(r) of liquid benzene at 293.15 K, provides the interpretation that nearest neighbors tend to be perpendicular. Two self-diffusion coefficients of liquid benzene at 293.15 K calculated from MSD and VAC function are in excellent agreement with the experimental measures. The self-diffusion coefficients of liquid toluene also agree well with the experimental ones for toluene in benzene and for toluene in cyclohexane.

Keywords

References

  1. Lee, S. K.; Lee, S. H. Bull. Korean Chem. Soc. 1999, 20, 893.
  2. Lee, S. H. Mol. Sim. 2000, 23, 243. https://doi.org/10.1080/08927020008025371
  3. Lee, S. H.; Lee, H.; Park, H.; Rasaiah, J. C. Bull. Korean Chem.Soc. 1996, 17, 735.
  4. Chynoweth, S.; Klomp, U. C.; Scales, L. E. Comput. Phys. Commun. 1991, 62, 297. https://doi.org/10.1016/0010-4655(91)90102-Q
  5. Chynoweth, S.; Klomp, U. C.; Michopoulos, Y. J. Chem. Phys.1991, 95, 3024. https://doi.org/10.1063/1.460909
  6. Berker, A.; Chynoweth, S.; Klomp, U. C.; Michopoulos, Y. J.Chem. Soc. Faraday Trans. 1992, 88, 1719. https://doi.org/10.1039/ft9928801719
  7. White, D. N. J.; Boville, M. J. J. Chem. Soc. Perkin Trans. 1977,2, 1610.
  8. Chynoweth, S.; Klomp, U. C.; Scales, L. E. Comput. Phys.Commun. 1991, 62, 297. https://doi.org/10.1016/0010-4655(91)90102-Q
  9. Evans, D. J.; Hoover, W. G.; Failor, B. H.; Moran, B.; Ladd, A. J.C. Phys. Rev. 1983, A28, 1016
  10. Simmons, A. J. D.; Cummings, P.T. Chem. Phys. Lett. 1986, 129, 92. https://doi.org/10.1016/0009-2614(86)80176-2
  11. Gear, C. W. Numerical Initial Value Problems in OrdinaryDifferential Equation; Prentice-Hall: Englewood Cliffs, NJ; 1971.
  12. Evans, D. J. Mol. Phys. 1977, 34, 317. https://doi.org/10.1080/00268977700101751
  13. Evans, D. J.; Murad, S. Mol. Phys. 1977, 34, 327. https://doi.org/10.1080/00268977700101761
  14. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids;Oxford Univ. Press.: Oxford, 1987; p 64.
  15. Lee, S. H.; Kim, H. S.; Pak, H. J. Chem. Phys. 1992, 97, 6933. https://doi.org/10.1063/1.463647
  16. Cabaço, M. I.; Danten, Y.; Besnard, M.; Guissani, Y.; Guillot, B.J. Phys. Chem. B 1997, 101, 6977. https://doi.org/10.1021/jp971331+
  17. Cabaço, M. I.; Danten, Y.; Besnard, M.; Guissani, Y.; Guillot, B.J. Phys. Chem. B 1998, 102, 10712. https://doi.org/10.1021/jp982880y
  18. Evans, D. J.; Watts, R. O. Mol. Phys. 1976, 32, 93. https://doi.org/10.1080/00268977600101631
  19. Lowden, L. J.; Chandler, D. J. Chem. Phys. 1974, 61, 5228. https://doi.org/10.1063/1.1681868
  20. Narten, A. H. J. Chem. Phys. 1968, 48, 1630. https://doi.org/10.1063/1.1668888
  21. Kim, J. H.; Lee, S. H. in preparation.
  22. Falcone, D. R.; Douglass, D. C.; McCall, D. W. J. Phys. Chem.1967, 71, 2754. https://doi.org/10.1021/j100867a067
  23. Graupner, K.; Winter, E. R. S. J. Chem. Soc. 1952, 1145. https://doi.org/10.1039/jr9520001145
  24. Hiraoka, H.; Osugi, J.; Jono, W. Rev. Phys. Chem. Japan 1958, 28,52.
  25. Rathbun, R. E.; Babb, A. L. J. Phys. Chem. 1961, 65, 1072. https://doi.org/10.1021/j100824a520
  26. Landolt-Bornstein, Numerical Data and Functional Relationshipsin Science and Technology, 6th Ed.; 1969; Vol. II/5a.

Cited by

  1. Intra- and Inter-Molecular Potential Parameters for Molecular Dynamics Simulation of Benzene and Cyclohexane Mixture vol.47, pp.12, 2014, https://doi.org/10.1252/jcej.14we127
  2. Molecular Dynamic Simulation of the Patchouli Oil Extraction Process vol.59, pp.2, 2014, https://doi.org/10.1021/je3013292
  3. Separation of Benzene, Toluene, Ethylbenzene and P-Xylene from Aqueous Solutions by Carbon Nanotubes/Polyvinylidene Fluoride Nanocomposite Membrane vol.08, pp.10, 2016, https://doi.org/10.4236/jwarp.2016.810075
  4. Viscosity of heptane-toluene mixtures. Comparison of molecular dynamics and group contribution methods vol.23, pp.2, 2017, https://doi.org/10.1007/s00894-017-3223-1
  5. Computer simulation and diffraction studies of the structure of liquid benzene vol.49, pp.3, 2008, https://doi.org/10.1007/s10947-008-0072-x
  6. A Dynamic Light Scattering Study of Fast Relaxations in Polymer Solutions vol.40, pp.6, 2002, https://doi.org/10.1021/ma0620518
  7. Molecular dynamics simulations of the liquid-crystal phases of 2-(4-butyloxyphenyl)-5-octyloxypyrimidine and 5-(4-butyloxyphenyl)-2-octyloxypyrimidine vol.81, pp.4, 2002, https://doi.org/10.1103/physreve.81.041704
  8. Molecular dynamics simulations of adsorption of hydrophobic 1,2,4-trichlorobenzene (TCB) on hydrophilic TiO2 in surfactant emulsions and experimental process efficiencies of photo-degradati vol.217, pp.1, 2002, https://doi.org/10.1016/j.jphotochem.2010.10.001
  9. Molecular dynamics simulation of benzene vol.1107, pp.None, 2002, https://doi.org/10.1016/j.molstruc.2015.11.032
  10. Dynamic Gate Opening of ZIF-8 for Bulky Molecule Adsorption as Studied by Vapor Adsorption Measurements and Computational Approach vol.123, pp.45, 2002, https://doi.org/10.1021/acs.jpcc.9b07239
  11. The Effects of Benzene on the Structure and Properties of Triethylamine Hydrochloride/Chloroaluminate vol.11, pp.12, 2002, https://doi.org/10.3390/cryst11121532