DOI QR코드

DOI QR Code

Molecular Dynamics Simulation Studies of Benzene, Toluene, and p-Xylene in NpT Ensemble: Thermodynamic, Structural, and Dynamic Properties


Abstract

In this paper we have presented the results of thermodynamic, structural, and dynamic properties of model systems for liquid benzene, toluene and p-xylene in an isobaric-isothermal (NpT) ensemble at 283.15, 303.15, 323.15, and 343.15 K using molecular dynamics (MD) simulation. This work is initiated to compensate for our previous canonical (NVT) ensemble MD simulations [Bull. Kor. Chem. Soc. 2001, 23, 441] for the same systems in which the calculated pressures were too low. The calculated pressures in the NpT ensemble MD simulations are close to 1 atm and the volume of each system increases with increasing temperature. The first and second peaks in the center of mass g(r) diminish gradually and the minima increase as usual for the three liquids as the temperature increases. The three peaks of the site-site gC-C(r) at 283.15 K support the perpendicular structure of nearest neighbors in liquid benzene. Two self-diffusion coefficients of liquid benzene via the Einstein equation and via the Green-Kubo relation are in excellent agreement with the experimental measures. The self-diffusion coefficients of liquid toluene and p-xylene are in accord with the trend that the self-diffusion coefficient decreases with increasing number of methyl group. The friction constants calculated from the force auto-correlation (FAC) function with the assumption that the fast random force correlation ends at time which the FAC has the first negative value give a correct qualitative trends: decrease with increase of temperature and increase with the number of methyl group. The friction constants calculated from the FAC's are always less than those obtained from the friction-diffusion relation which reflects that the random FAC decays slower than the total FAC as described by Kubo [Rep. Prog. Phys. 1966, 29, 255].

Keywords

References

  1. Kim, J. H.; Lee, S. H. Bull. Korean Chem. Soc. 2001, 23, 441. https://doi.org/10.1007/BF02706747
  2. Evans, D. J.; Morriss, G. P. Chem. Phys. 1983, 77, 63. https://doi.org/10.1016/0301-0104(83)85065-4
  3. Evans, D. J.; Morriss, G. P. Comput. Phys. Repts. 1984, 1, 297. https://doi.org/10.1016/0167-7977(84)90001-7
  4. Evans, D. J.; Hoover, W. G.; Failor, B. H.; Moran, B.; Ladd, A.J. C. Phys. Rev. A 1983, 28, 1016. https://doi.org/10.1103/PhysRevA.28.1016
  5. Simmons, A. D.;Cummings, P. T. Chem. Phys. Lett. 1986, 129, 92. https://doi.org/10.1016/0009-2614(86)80176-2
  6. Lee, S. H.; Kim, H. S.; Pak, H. J. Chem. Phys. 1992, 97, 6933. https://doi.org/10.1063/1.463647
  7. Evans, D. J. Mol. Phys. 1977, 34, 317. https://doi.org/10.1080/00268977700101751
  8. Evans, D. J.; Murad, S. Mol. Phys. 1977, 34, 327. https://doi.org/10.1080/00268977700101761
  9. Cummings, P. T.; Varner, Jr. T. L. J. Chem. Phys. 1988, 89, 6391. https://doi.org/10.1063/1.455407
  10. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids;Oxford Univ. Press.: Oxford, 1987; p 64.
  11. Gear, C. W. Numerical Initial Value Problems in OrdinaryDifferential Equation; Prentice-Hall: Englewood Cliffs, NJ, 1971.
  12. Ben-Naim, A.; Marcus, Y. J. Chem. Phys. 1984, 81, 2016. https://doi.org/10.1063/1.447824
  13. Narten, A. H. J. Chem. Phys. 1968, 48, 1630. https://doi.org/10.1063/1.1668888
  14. Lowden, L. J.; Chandler, D. J. Chem. Phys. 1974, 61, 5228. https://doi.org/10.1063/1.1681868
  15. Cabaço, M. I.; Danten, Y.;. Besnard, M.; Guissani, Y.; Guillot, BJ. Phys. Chem. B 1997, 101, 6977. https://doi.org/10.1021/jp971331+
  16. Falcone, D. R.; Douglass, D. C.; McCall, D. W. J. Phys. Chem.1967, 71, 2754. https://doi.org/10.1021/j100867a067
  17. Graupner, K.; Winter, E. R. S. J. Chem. Soc. 1952, 1145. https://doi.org/10.1039/jr9520001145
  18. Hiraoka, H.; Osugi, J.; Jono, W. Rev. Phys. Chem. Japan 1958, 28,52.
  19. Rathbun, R. E.; Babb, A. L. J. Phys. Chem. 1961, 65, 1072. https://doi.org/10.1021/j100824a520
  20. Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, 6th Ed.; 1969; Vol. II/5a.
  21. Ciccotti, G.: Ferrario, M.: Hynes, J. T.: Kapral, R. J. Chem. Phys.1990, 93, 7137. https://doi.org/10.1063/1.459437
  22. Kubo, R. Rep. Prog. Phys. 1966, 29, 255. https://doi.org/10.1088/0034-4885/29/1/306

Cited by

  1. Solvation by benzene: molecular dynamics simulation of orientational motion, translational diffusion, and site–site radial distributions of the solutes di- and trichloromethane (chloroform) vol.105, pp.8, 2007, https://doi.org/10.1080/00268970701261431
  2. Neutron Scattering of Aromatic and Aliphatic Liquids vol.17, pp.13, 2016, https://doi.org/10.1002/cphc.201600149
  3. Simultaneous free-volume modeling of the self-diffusion coefficient and dynamic viscosity at high pressure vol.69, pp.3, 2004, https://doi.org/10.1103/PhysRevE.69.031203
  4. Enhanced near-neighbour aggregation of dichloro- and trichloromethane in liquid methane solution from molecular dynamics simulation of radial site-site distribution functions: a simple predictor of so vol.104, pp.19, 2002, https://doi.org/10.1080/00268970601014336
  5. Molecular dynamics simulations of the liquid-crystal phases of 2-(4-butyloxyphenyl)-5-octyloxypyrimidine and 5-(4-butyloxyphenyl)-2-octyloxypyrimidine vol.81, pp.4, 2002, https://doi.org/10.1103/physreve.81.041704
  6. Accuracy of Quantum Mechanically Derived Force-Fields Parameterized from Dispersion-Corrected DFT Data: The Benzene Dimer as a Prototype for Aromatic Interactions vol.11, pp.11, 2002, https://doi.org/10.1021/acs.jctc.5b00642
  7. Molecular dynamics simulation of benzene vol.1107, pp.None, 2002, https://doi.org/10.1016/j.molstruc.2015.11.032