DOI QR코드

DOI QR Code

Binary Cure Systems of 1,6-Bis(N,N'-dibenzylthiocarbamoyldithio)-hexane and Benzothiazole Sulfenamides in Carbon Black-filled Natural Rubber Compounds

  • Choi, Sung-Seen (Advanced Materials Research Center, Chungnam National University) ;
  • Park, Byung-Ho (Kumho Research and Development Center) ;
  • Lee, Seung-Goo (Department of Textile Engineering, College of Engineering, Chungnam National University) ;
  • Kim, Beom-Tae (Research Center of Bioactive Materials, College of Natural Science, Chonbuk National University)
  • Published : 2002.02.20

Abstract

Binary cure system is composed of different two cure accelerators, which can cause a synergy effect to delay the scorch time and to increase the cure rate. In this study, binary cure systems between 1,6-bis(N,N'-dibenzylthiocarbamoyldithio)-hexane (DBTH) and benzothiazole sulfenamides were investigated using carbon black-filled natural rubber compounds. N-Cyclohexyl-2-benzothiazole sulfenamide (CBS), N-tert-butyl-2-benzothiazole sulfenamide (TBBS), and 2-(morpholinothio) benzothiazole (MOR) were employed as benzothiazole sulfenamides. The binary cure systems show scorch safty at high temperature. The binary cure systems have faster cure rate and better reversion resistance than the single cure system of the benzothiazole sulfenamides. DBTH is found to be more effective to decrease the viscosity of a compound than the benzothiazole sulfenamides. Physical properties of the vulcanizates with the binary cure system are better than those of the vulcanizates with the single one.

Keywords

References

  1. Choi, S.-S. Kor. Polym. J. 1997, 5, 39
  2. Chen, C. H.; Koenig, J. L.; Shelton, J. R.; Collins, E. A. Rubber Chem. Technol. 1981, 54, 734
  3. Chen, C. H.; Collins, E. A.; Koenig, J. L.; Shelton, J. R. Rubber Chem. Technol. 1982, 55, 1221 https://doi.org/10.5254/1.3535923
  4. Morrison, N. J.; Porter, M. Rubber Chem. Technol. 1984, 57, 63 https://doi.org/10.5254/1.3536002
  5. Layer, R. W. Rubber Chem. Technol. 1992, 65, 211 https://doi.org/10.5254/1.3538601
  6. Lautenschlaeger, F. K.; Zeeman, P. Rubber Chem. Technol. 1979, 52, 1030 https://doi.org/10.5254/1.3535251
  7. Guillaumono, F.-X. Rubber Chem. Technol. 1976, 49, 105 https://doi.org/10.5254/1.3534937
  8. Layer, R. W. In Proceedings of Rubber Division 128th Meeting; American Chemical Society; 1985; Paper No. 112
  9. Ferrandino, M. P.; Saanders, J. A.; Hong, S. W. In Proceedings of Rubber Division 147th Meeting; American Chemical Society; 1995; Paper No. 29
  10. Datta, R. N.; Das, M. M.; Basu, D. K.; Chaudhuri, A. K. Rubber Chem. Technol. 1984, 57, 879 https://doi.org/10.5254/1.3536046
  11. Mandal, S. K.; Datta, R. N.; Basu, D. K. Rubber Chem. Technol. 1989, 62, 569 https://doi.org/10.5254/1.3536260
  12. Mandal, S. K.; Datta, R. N.; Basu, D. K. Polym. Plast. Technol. Eng. 1989, 28, 957 https://doi.org/10.1080/03602558908054601
  13. Pal, D.; Adhikari, B.; Basu, D. K. Rubber Chem. Technol. 1983, 56, 827 https://doi.org/10.5254/1.3538157
  14. Buding, H.; Jeske, W.; Weidenhaupt, H.-J. Kautsch. Gummi Kunstst. 2001, 54, 8
  15. Park, B.-H.; Choi, S.-S. J. Ind. Chem. Eng. in press
  16. CRC Handbook of Chemistry and Physics, 75th Edition, Ed.; Lide D. R., CRC Press: London, 1995
  17. Morita, E.; Young, E. J. Rubber Chem. Technol. 1963, 36, 844 https://doi.org/10.5254/1.3539615
  18. Ignatz-Hoover, F.; Kuhls, G. In Proceedings of Rubber Division 145th Meeting; American Chemical Society; 1994; Paper No. 3
  19. McCleverty, J. A.; Spencer, N.; Bailey, N. A.; Shackleton, S. L. J. Chem. Soc. Dalton Trans. 1980, 1939
  20. Nieuwenhuizen, P. J.; Timal, S.; van Veen, J. M.; Haasnoot, J. G.; Reedijk, J. Kautsch. Gummi Kunstst. 1998, 51, 336
  21. Boros, S.; Agullo, N. Kautsch. Gummi Kunstst. 2000, 53, 131
  22. Datta, R. N.; Das, M. M.; Basu, D. K.; Chaudhuri, A. K. Rubber Chem. Technol. 1984, 57, 879 https://doi.org/10.5254/1.3536046
  23. Mandal, S. K.; Datta, R. N.; Basu, D. K. Rubber Chem. Technol. 1984, 62, 569
  24. Ferrandino, M. P.; Sanders, J. A.; Hong, S. W. In Proceedings of Rubber Division 147th Meeting; American Chemical Society: 1995; Paper No. 29
  25. Morrison, N. J.; Porter, M. Rubber Chem. Technol. 1984, 57, 63 https://doi.org/10.5254/1.3536002

Cited by

  1. N-benzoyl-N′N′-disubstituted thioureas-A new binary accelerator system and its effect of nucleophilicity in sulfur vulcanization of natural rubber vol.124, pp.2, 2012, https://doi.org/10.1002/app.35144
  2. Studies on novel binary accelerator system in sulfur vulcanization of natural rubber vol.90, pp.12, 2003, https://doi.org/10.1002/app.13023
  3. ROLES OF SULFUR AND ACCELERATORS IN THE VULCANIZATION OF SBR COMPOUNDS DEDUCED THROUGH SIMULATION vol.91, pp.3, 2018, https://doi.org/10.5254/rct.18.82615
  4. Thermal Aging Behaviors of Elemental Sulfur-Free Polyisoprene Vulcanizates vol.26, pp.11, 2002, https://doi.org/10.5012/bkcs.2005.26.11.1853
  5. Thermal Aging Behaviors of Rubber Vulcanizates Cured with Single and Binary Cure Systems vol.27, pp.3, 2002, https://doi.org/10.5012/bkcs.2006.27.3.429