DOI QR코드

DOI QR Code

Visible Surface-Assisted Laser Desorption/Ionization Mass Spectrometry of Small Macromolecules Deposited on the Graphite Plate

  • Published : 2002.02.20

Abstract

Visible surface-assisted desorption/ionization mass spectrometry (SALDI-MS) has been investigated for several small macromolecules deposited on the graphite plate using laser radiation at 532 nm where most of the macromolecules are transparent. The graphite surface functioned well as a photon absorbing material and an energy transfer mediator for visible light. The results show that visible SALDI is a much softer ionization technique than UV-MALDI and FAB-MS in our results with synthetic macromolecules, PPG, PPGMBE and cavitand molecules. For the SALDI of biomolecules, glycerol as a proton source was essential with the graphite plate. As in visible SALDI, the role division of the photon absorbing material and the cationization agent can provide a generality in mass spectrometric analysis of macromolecules compared with MALDI using the dual functional matrix.

Keywords

References

  1. Karas, M.; Bachmann, D.; Bahr, U.; Hillenkamp, H. Int. J. Mass Spectrom. Ion Processes 1987, 78, 53 https://doi.org/10.1016/0168-1176(87)87041-6
  2. Krause, J.; Stoeckli, M.; Schunegger, U. R. Rapid Commun. Mass Spectrom. 1996, 10, 1927
  3. Menzel, C.; Berkenkamp, S.; Hillenkamp, F. Rapid Commun. Mass Spectrom. 1999, 13, 26
  4. Hillenkamp, F.; Karas, M.; Beavis, R. C.; Chait, B. T. Anal. Chem. 1991, 63, 1193A https://doi.org/10.1021/ac00024a002
  5. Allwood, D. A.; Perera, I. K.; Perkins, J.; Dyer, P. E.; Oldershaw, G. Appl. Surf. Sci. 1996, 103, 231 https://doi.org/10.1016/0169-4332(96)00530-2
  6. Kang, W. K.; Kim, J.; Paek, K.; Shin, K. S. Rapid Commun. Mass Spectrom. 2001, 15, 941
  7. Smith, C. J.; Chang, S. Y.; Yeung, E. S. J. Mass Spectrom. 1995, 30, 1765 https://doi.org/10.1002/jms.1190301218
  8. Cornett, D. S.; Duncan, M. A.; Amster, I. J. Anal. Chem. 1993, 65, 2608. https://doi.org/10.1021/ac00067a011
  9. Schieltz, D. M.; Chou, C. W.; Luo, C. W.; Thomas, R. M.; Williams, P. Rapid Commun. Mass Spectrom. 1992, 6, 631
  10. Sunner, J.; Dratz, E.; Chen, Y.-C. Anal. Chem. 1995, 67, 4335 https://doi.org/10.1021/ac00119a021
  11. Michael, J. D.; Knochenmuss, R.; Zenobi, R. Anal. Chem. 1996, 68, 3321. https://doi.org/10.1021/ac960558i
  12. Kim, J.; Kang, W. K. Bull. Korean Chem. Soc. 2000, 21, 401
  13. Kim, H.-J.; Lee, J.-K.; Park, S.-J.; Ro, H. W.; Yoo, D. Y.; Yoon, D. Y. Anal. Chem. 2000, 22, 5673
  14. Ihm, C.; Kim, M.; Ihm, H.; Paek, K. J. Chem. Soc. Perkin Trans. 2 1999, 1569
  15. David, C. S.; Liang, L. Anal. Chem. 1997, 69, 4176 https://doi.org/10.1021/ac9707794
  16. Mowat, I. A.; Donovan, R. J.; Maier, R. J. Rapid Commun. Mass Spectrom. 1997, 11, 89
  17. Vincenti, M. J. Mass Spectrom. 1995, 30, 925 https://doi.org/10.1002/jms.1190300702
  18. Przybylski, M.; Glocker, M. O. Angew. Chem. Int. Ed. Engl. 1996, 35, 806 https://doi.org/10.1002/anie.199608061
  19. Schalley, C. A. Int. J. Mass Spectrom. 2000, 194, 11 https://doi.org/10.1016/S1387-3806(99)00243-2
  20. Gutsche, C. D. Calixarenes, Monographs in Supramolecular Chemistry; Stoddart, J. F., Ed.; The Royal Society of Chemistry Press: Cambridge, 1989; Vol. 1.
  21. Cram, D. J. Science 1988, 219, 1177.
  22. Lee, H.-J.; Paek, K. Bull. Korean Chem. Soc. 2000, 21, 526
  23. Krause, J.; Stoeckli, M.; Schunegger, U. P. Rapid Commun. Mass Spectrom. 1996, 10, 1927
  24. Tanaka, K.; Waki, H.; Idao, Y.; Akita, S.; Yoshida, Y.; Yoshida, T. Rapid Commun. Mass Spectrom. 1988, 2, 151 https://doi.org/10.1002/rcm.1290020802

Cited by

  1. Current literature in mass spectrometry vol.37, pp.7, 2002, https://doi.org/10.1002/jms.254
  2. Visible Laser Desorption/Ionization Mass Spectrometry Using Gold Nanorods vol.111, pp.6, 2007, https://doi.org/10.1021/jp065540i
  3. Gold Nanoparticles as a Matrix for Visible-Wavelength Single-Particle Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of Small Biomolecules vol.112, pp.11, 2008, https://doi.org/10.1021/jp076688k
  4. A useful binary matrix for visible-MALDI of low molecular weight analytes vol.21, pp.2, 2010, https://doi.org/10.1016/j.jasms.2009.10.016
  5. Doped amorphous silica nanoparticles as enhancing agents for surface-assisted time-of-flight mass spectrometry vol.136, pp.13, 2011, https://doi.org/10.1039/c1an15172j
  6. Matrix-free and material-enhanced laser desorption/ionization mass spectrometry for the analysis of low molecular weight compounds vol.400, pp.8, 2011, https://doi.org/10.1007/s00216-010-4138-1
  7. Small-molecule analysis by surface-assisted laser desorption/ionization mass spectrometry vol.66, pp.13, 2011, https://doi.org/10.1134/S1061934811130065
  8. Graphite Supported Preparation (GSP) of α-Cyano-4-Hydroxycinnamic Acid (CHCA) for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Peptides and Proteins vol.23, pp.11, 2012, https://doi.org/10.1007/s13361-012-0478-8
  9. Graphite-Coated Paper as Substrate for High Sensitivity Analysis in Ambient Surface-Assisted Laser Desorption/Ionization Mass Spectrometry vol.84, pp.7, 2012, https://doi.org/10.1021/ac300002g
  10. Combination of graphite-assisted laser desorption/ionization (GALDI) mass spectrometry with thin layer chromatography vol.69, pp.14, 2014, https://doi.org/10.1134/S1061934814140032
  11. Investigation of colloidal graphite as a matrix for matrix-assisted laser desorption/ionisation mass spectrometry of low molecular weight analytes vol.51, pp.7, 2016, https://doi.org/10.1002/jms.3774
  12. Silicone/graphite coating for on-target desalting and improved peptide mapping performance of matrix-assisted laser desorption/ionization-mass spectrometry targets in proteomic experiments vol.5, pp.6, 2005, https://doi.org/10.1002/pmic.200401023
  13. Matrix-assisted laser desorption/ionization mass spectrometry using a visible laser vol.21, pp.24, 2007, https://doi.org/10.1002/rcm.3315
  14. Detection of drugs and their metabolites in dusted latent fingermarks by mass spectrometry vol.134, pp.4, 2009, https://doi.org/10.1039/b813957c
  15. Desorption and ionization mechanisms and signal enhancement in surface assisted laser desorption ionization mass spectrometry (SALDI-MS) pp.1520-569X, 2019, https://doi.org/10.1080/05704928.2019.1570519
  16. Matrix-free Laser Desorption/Ionization on Vertically Aligned Carbon Nanotube Arrays vol.27, pp.4, 2002, https://doi.org/10.5012/bkcs.2006.27.4.581
  17. Development of a multi-frequency laser for use in MALDI-TOFMS vol.68, pp.3, 2002, https://doi.org/10.1016/j.talanta.2005.05.008
  18. The use of pencil lead as a matrix and calibrant for matrix-assisted laser desorption/ionisation vol.20, pp.7, 2006, https://doi.org/10.1002/rcm.2408
  19. Role of carbon nano-materials in the analysis of biological materials by laser desorption/ionization-mass spectrometry vol.70, pp.2, 2007, https://doi.org/10.1016/j.jbbm.2006.11.004
  20. Visible wavelength MALDI using Coumarin laser dyes vol.278, pp.1, 2002, https://doi.org/10.1016/j.ijms.2008.08.009
  21. Lithographically patterned silicon nanowire arrays for matrix free LDI-TOF/MS analysis of lipids vol.10, pp.3, 2002, https://doi.org/10.1039/b913212k
  22. Direct detection of the anti‐cancer drug 9‐phenylacridine in tissues by graphite rod laser desorption vacuum‐ultraviolet post‐ionization mass spectrometry vol.29, pp.14, 2002, https://doi.org/10.1002/rcm.7226