DOI QR코드

DOI QR Code

Vibrational Analysis of Ferrocyanide Complex Ion Based on Density Functional Force Field

  • Park, Sun-Kyung (Department of Chemistry, Chungbuk National University) ;
  • Lee, Choong-Keun (Department of Chemistry, Chungbuk National University) ;
  • Lee, Sang-Ho (Biophysics Research Division and Department of Physics, The University of Michigan) ;
  • Lee, Nam-Soo (Department of Chemistry, Chungbuk National University)
  • Published : 2002.02.20

Abstract

Vibrational properties of ferrocyanide complex ion, $[Fe(CN)_6]^{4-}$ , have been studied based on the force constants obtained from the density functional calculations at B3LYP/$6-31G^{\ast\ast}$ level by means of the normal mode analysis using new bond angle and linear angle internal coordinates recently developed. Vibrations of ferrocyanide were manipulated by twenty-three symmetry force constants. The angled bending deformations of C-Fe-C, the linear bending deformations of Fe-C${\equiv}$N and the stretching vibrations of Fe-C have been quantitatively assigned to the calculated frequencies. The force constants in the internal coordinates employed in the modified Urey-Bradley type potential were evaluated on the density functional force field applied, and better interaction force constants in the internal coordinates have been proposed. The valence force constants in the general quadratic valence force field were also given. The stretch-stretch interaction and stretch-bending interaction constants are not sensitive to the geometrical displacement in the valence force field.

Keywords

References

  1. Nakagawa, I.; Shimanouchi, T. Spectrochim. Acta 1962, 18, 101 https://doi.org/10.1016/0371-1951(62)80054-X
  2. Jones, L. H. Inorg. Chem. 1963, 2, 777 https://doi.org/10.1021/ic50008a027
  3. Bloor, D. J. Chem. Phys. 1964, 41, 2573 https://doi.org/10.1063/1.1726324
  4. Nakagawa, I.; Shimanouchi, T. Spectrochim. Acta 1966, 22, 1707 https://doi.org/10.1016/0371-1951(66)80216-3
  5. Nakagawa, I.; Shimanouchi, T.; Yamasaki, K. Inorg. Chem. 1968, 7, 1332 https://doi.org/10.1021/ic50065a016
  6. Nakagawa, I.; Shimanouchi, T. Spectrochim. Acta 1970, 26A, 131
  7. Swanson, B. I.; Jones, L. H. J. Chem. Phys. 1970, 53, 3761 https://doi.org/10.1063/1.1674566
  8. Griffith, W. P.; Turner, G. T. J. Chem. Soc. (A) 1970, 858 https://doi.org/10.1039/j19700000858
  9. Swanson, B. I.; Jones, L. H. J. Chem. Phys. 1971, 55, 4174. https://doi.org/10.1063/1.1676733
  10. Jones, L. H.; Swanson, B. I.; Kubas, G. J. J. Chem. Phys. 1971, 55, 4174. https://doi.org/10.1063/1.1676733
  11. Hipps, K. W.; Williams, S. D.; Mazur, U. Inorg. Chem. 1984, 23, 3500 https://doi.org/10.1021/ic00190a013
  12. Swanson, B. I.; Jones, L. H. Inorg. Chem. 1974, 13, 313. https://doi.org/10.1021/ic50132a013
  13. Jones, L. H.; Swanson, B. I. Acc. Chem. Res. 1976, 9, 128. https://doi.org/10.1021/ar50100a002
  14. Jones, L. H.; McDowell, R. S.; GoldBlatt, M. Inorg. Chem. 1969, 8, 2349 https://doi.org/10.1021/ic50081a025
  15. Fan, L.; Ziegler, T. J. Phys. Chem. 1992, 96, 6937. https://doi.org/10.1021/j100196a016
  16. Sosa, C.; Andzelm, J.; Elkin, B. C.; Wimmer, E.; Dobbs, K. D.; Dixon, D. A. J. Phys. Chem. 1992, 96, 6630. https://doi.org/10.1021/j100195a022
  17. Berces, A.; Ziegler, T.; Fan, L. J. Phys. Chem. 1994, 98, 1584 https://doi.org/10.1021/j100057a010
  18. Berces, A.; Ziegler, T. J. Phys. Chem. 1995, 99, 11417. https://doi.org/10.1021/j100029a019
  19. Ziegler, T. In Density Functional Methods in Chemistry and Materials Science; Springborg, M., Ed.; John Wiley and Sons: U.K., 1997; p 69.
  20. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785 https://doi.org/10.1103/PhysRevB.37.785
  21. Lee, S.-H.; Krimm, S. Biopolymer 1998, 48, 283
  22. Durig, J. R.; Yu, Z.; Guirgis, G. A. J. Phys. Chem. A 2000, 104, 741. https://doi.org/10.1021/jp992560u
  23. Park, S.-K.; Lee, N.-S.; Lee, S.-H. Bull. Korean Chem. Soc. 2000, 21, 959.
  24. Lee, S.-H.; Palmo, K.; Krimm, S. J. Comput. Chem. 1999, 20, 1067 https://doi.org/10.1002/(SICI)1096-987X(19990730)20:10<1067::AID-JCC9>3.0.CO;2-V
  25. Rauhut, G.; Pulay, P. J. Phys. Chem. 1995, 99, 3093 https://doi.org/10.1021/j100010a019
  26. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998
  27. Sano, M.; Kashiwagi, H.; Yamatera, H. Inorg. Chem. 1982, 21, 3837 https://doi.org/10.1021/ic00140a048
  28. Mandix, K.; Hohanson, H. J. Phys. Chem. 1992, 96, 7261 https://doi.org/10.1021/j100197a025
  29. Bolvin, H. J. Phys. Chem. A 1998, 102, 7525 https://doi.org/10.1021/jp982759r
  30. Pierloot, K.; Praet, E. V.; Vanquickenborne, L. G.; Roos, B. O. J. Phys. Chem. 1993, 97, 12220 https://doi.org/10.1021/j100149a021

Cited by

  1. Ammonium, barium hexacyanoferrate(II) trihydrate vol.120, pp.3, 2015, https://doi.org/10.1007/s10973-015-4492-5
  2. Vibrational Strong Coupling of Organometallic Complexes vol.120, pp.49, 2016, https://doi.org/10.1021/acs.jpcc.6b10493
  3. Vibrational properties and bonding analysis of copper hexacyanoferrate complexes in solid state pp.1520-569X, 2019, https://doi.org/10.1080/05704928.2018.1459659
  4. Vibrational Population Relaxation and Dephasing Dynamics of Fe(CN)64- in D2O with Third-Order Nonlinear Infrared Spectroscopy vol.108, pp.8, 2002, https://doi.org/10.1021/jp0369847
  5. Structural and Conformational Studies of ortho-, meta-, and para-Methyl Red upon Proton Gain and Loss vol.26, pp.8, 2002, https://doi.org/10.5012/bkcs.2005.26.8.1170
  6. Magnetoelastic coupling in [Ru2(O2CMe)4]3[Cr(CN)6] molecule-based magnet vol.86, pp.21, 2002, https://doi.org/10.1103/physrevb.86.214411
  7. Pressure-driven high-to-low spin transition in the bimetallic quantum magnet $ [\mathrm{Ru}_{2}(\mathrm{O}_{2}\mathrm{CMe})_{4}]_{3}[\mathrm{Cr}(CN)_{6}]$ vol.90, pp.10, 2002, https://doi.org/10.1103/physrevb.90.104301
  8. Chemical Inhibition Method to Synthesize Highly Crystalline Prussian Blue Analogs for Sodium-Ion Battery Cathodes vol.8, pp.46, 2002, https://doi.org/10.1021/acsami.6b10884
  9. Role of Iron Phthalocyanine Coordination in Catecholamines Detection vol.4, pp.4, 2002, https://doi.org/10.3390/surfaces4040027