Vibrational Analysis of Ferrocyanide Complex Ion Based on Density Functional Force Field

Sun-Kyung Park, Choong-Keun Lee, Sang-Ho Lee, ${ }^{*}$ and Nam-Soo Lee*
Deparment of Chemistry, Chungbuk Vational Lnmersity, Cheongiu, Chungbuk 361-763, Korea
${ }^{\dagger}$ Biophusics Research Division and Deparment of Phvsics, The Umwersity of Afichigan. Ahm . Arbor, AII 48109, USA
Recened Jull 5, 2001

Abstract

Vibrational properties of ferrocyanide complex ion. $\left[\mathrm{Fe}(\mathrm{CN})_{6}{ }^{+-}\right.$. have been studied based on the force constants obtained from the density functional calculations at B3LYP/6-3IG** level by means of the normal mode analysis using new bond angle and linear angle internal coordinates recently developed. Vibrations of ferrocyanide were manipulated by twenty-three symmetry force constants. The angled bending deformations of $\mathrm{C}-\mathrm{Fe}-\mathrm{C}$. the linear bending deformations of $\mathrm{Fe}-\mathrm{C} \equiv \mathrm{N}$ and the stretching vibrations of $\mathrm{Fe}-\mathrm{C}$ have been quantitatively assigned to the calculated frequencies. The force constants in the internal coordinates employed in the modified Urey-Bradley type potential were evaluated on the density functional force field applied. and better interaction force constants in the internal coordinates have been proposed. The valence force constants in the general quadratic valence force field were also given. The stretch-stretch interaction and stretch-bending interaction constants are not sensitive to the geometrical displacement in the valence force field.

Keywords : Ferrocyanide. Vibrational analysis. Normal mode.

Introduction

Vibrational studies of molecules. metal complex ions, and other chemical systems have been direct methods approaching to understand the interatomic forces. The nature of metal-carbon bond in the transition metal-cyanide complexes derives considerable interests including σ-bonding or π bonding characters and the force constant itself. Octahedral hexacyano transition metal complexes have inherent difficulties in assigning the vibrations of metal-carbon stretching. carbon-metal-carbon angled bending deformations. and metal-carbon-nitrogen linear bending deformations. Because it is strongly dependent on the bond strengths or distances of metal-carbon and carbon-nitrogen, vibrations can vary up to the centered transition metal atom, its oxidation state or surrounding counter-cations. Vibrations of these metal complexes had been extensively studied by vibrational spectroscopic methods and normal mode calculations using the valence force field or the Urey-Bradley force field ${ }^{1-1}$ 2 Also ab initio or other quantum mechanical treatments ${ }^{13.14}$ for these transition metal complexes of carbonyls as well cyanides have been performed for the vibrational properties or the electronic energies.

Applications of density functional theory ${ }^{15}$ (DFT) to chemical systems have received much attention recently because of a faster convergence in time than the traditional quantum mechanical correlation methods in part. and improvements in the prediction of the molecular properties. i.e.. the force field. vibrational frequencies. and dipole moments. Therefore the force field from DFT calculation has been utilized with the spectroscopic measurements for the assignment of observed frequencies and the refinements of the molecular force field under study. The normal mode analysis using Wilson`s GF matrix formulation has been
applied to elucidate the molecular systems of chemistry and biological sciences. ${ }^{16.17}$ This matrix method has been enforced with improvements in the setup of internal coordinates. ${ }^{18}$ the transferable scaling factors for various functional groups. ${ }^{19}$ or in the computational method for the refinement procedure of the force field. It is now in progress to expand its application areas to molecular dynamics studies as well as structural studies.

In the present study, the vibrational analysis of octahedral ferrocyanide complex ion. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$, was performed by normal mode analysis method using the density functional force constant matrices to clarify the vibrational structure. The stretching vibrations of $\mathrm{Fe}-\mathrm{C}$. the angled bending deformations of $\mathrm{C}-\mathrm{Fe}-\mathrm{C}$. and the linear bending deformations of $\mathrm{Fe}-\mathrm{C} \equiv \mathrm{N}$ have been quantitatively assigned to the calculated frequencies. Also we attempted to understand what changes could be induced in the interaction force constants upon geometrical displacement. and to obtain the force constants in the internal coordinates of the general quadratic valence force field or the modified Urey-Bradley type potential function applied to the study of ferrocyanide.

Calculation Methods

Four different geometries of ferrocyanide complex ion. i.e., geometry A. B. C and Opt are shown in Table 1. The geometry Opt is a fully optimized structure. The geometry A.B. and C are a little distorted structures to take the effects on the force field caused from the geometrical displacement. The structural feature of ferrocyanide with charge -4 and spin multiplicity 1 was applied to the Gaussian package ${ }^{20}$ for the calculation of force constants matrix and intensities of Raman and IR bands at a certain geometry using the 6$31 \mathrm{G}^{* *}$ basis set under the B3LYP functional level. Calculat-

Table 1. Structural parameters, Electronic energies ($\Delta E_{e f e c} / \mathrm{kcal} / \mathrm{mol}$) and Summations ($\Delta G_{7} / \mathrm{kcal} / \mathrm{mol}$) of electronic and thennal free energies of three different geometries \mathbf{A}, \mathbf{B}, and \mathbf{C} relative to $\mathbf{O p t}$, and Optimized structural parameters of Ferocyanide complex ion at various levels of theory

	Stuctural Parameters and Energies Calculated at B3LYP/6-3IG**				Optimized Structural Parameters of [$\left.\mathrm{Fe}(\mathrm{CN}) \mathrm{k}^{4}\right]^{+-}$				
	Geometry				B3LYP	B3LYP	HF	MP2	MP2
	A	B	C	Opt ${ }^{\text {t }}$	6-31+G**	$6-31 \mathrm{G}$ (3df, 3pd)	6-319**	6-31G**	6-31+G**
$\mathrm{Fe}-\mathrm{C}$	1.900 A	$1.910 \AA$	$1.910 \AA$	$2.009 \AA$	2.018 A	2.010 A	2.325 A	1.860 A	$1.844 \AA$
$\mathrm{C} \equiv \mathrm{N}$	1.184 A	$1.184 \AA$	1.190 A	$1.184 \AA$	1.187 A	1.176 A	1.158 A	$1.204 \AA$	1.209 A
$\Delta E_{\text {elec }}$	8.0	6.4	6.6	0.0					
ΔG_{T}	10.0	8.3	9.3	0.0					

"fully optimized geometry
ed Cartesian force constants were transformed to a set of force constants in the symmetry coordinates or in the internal coordinates. Normal mode frequencies of vibrations were calculated using the Wilson s GF matrix method.

The chemical structure of ferrocyanide comples ion is shown in Figure 1 with an index number for each atom. The isotope atomic masses applied were 12.01115 for carbon. 14.00307 for nitrogen. and 55.84700 for $\operatorname{Iron}(I I)$, respectively. The intemal coordinates of ferrocyanide with total 13 atoms consist of twelve stretching internal coordinates ($\Delta \mathrm{r}$) numbered R1 to RI2. and twenty four deformation internal coordinates $(\Delta \theta)$ numbered R13 to R36. Half of the deformations are the bond-angle deformations numbered R13 to R24. and the rest are linear angle deformations numbered R24 to R36. They are defined based on the atomic numbering scheme in Figure 1. New intemal coordinate system ${ }^{18}$ for the bond-angle deformation was adapted. As an internal coordinate of the bond-angle deformation, the half distance between two end points of two bonds comected was employed as given in Table 2. For a linear angle deformation, two torsion angles. $\theta_{1}\left(=0^{\circ}\right)$ and $\theta_{v i}\left(=90^{\circ}\right)$, were introduced as internal coordinates as shown in Table 2 because each

Figure 1. Chemical structure of ferrocyanide complex ion with the indexing numbers.

Table 2. Intemal Coordinates of Ferrocyanide Complex Ion (R: the indes number of intemal coordinates, Atoms: Connections indicated with the index number shown in Figure 1.j and Molecular Structural Parameters applied for Geometry B

R	Name ${ }^{\text {a }}$	Atoms	Geometry	Parameters
R1	$\Delta \mathrm{r}(\mathrm{Fe}-\mathrm{C})$	1-2	1.910 A	1.910 A
R2	$\Delta \mathrm{r}(\mathrm{Fe}-\mathrm{C})$	1-4	1.910 A	1.910 A
R 3	$\Delta \mathrm{r}(\mathrm{Fe}-\mathrm{C})$	1-6	1.910 A	1.910 A
R4	$\Delta \mathrm{r}(\mathrm{Fe}-\mathrm{C})$	1-8	1.910 A	1.910 A
R5	$\Delta \mathrm{s}(\mathrm{Fe}-\mathrm{C})$	1-10	1.910 A	1.910 A
R6	$\Delta \mathrm{r}(\mathrm{Fe}-\mathrm{C})$	1-12	1.910 A	1.910 A
R7	$\Delta \mathrm{r}(\mathrm{C} \equiv \mathrm{N})$	2-3	1.184 Á	$1.184 \AA$
R8	$\Delta \mathrm{r}(\mathrm{C} \equiv \mathrm{N})$	4-5	1.184 A	1.184 A
R9	$\Delta \mathrm{r}(\mathrm{C} \equiv \mathrm{N})$	6-7	1.184 Á	1.184 A
R10	$\Delta \mathrm{r}(\mathrm{C} \equiv \mathrm{N})$	8-9	1.184 A	1.184 A
RIl	$\Delta \mathrm{r}(\mathrm{C} \equiv \mathrm{N})$	10-11	1.184 A	1.184 A
R12	$\Delta \mathrm{r}(\mathrm{C} \equiv \mathrm{N})$	12-13	1.184 A	
R13	$\Delta \theta(\mathrm{C}-\mathrm{Fe}-\mathrm{C})$	2-1-4	$90.0{ }^{\circ}$	1.351
R14	$\Delta \theta(\mathrm{C}-\mathrm{Fe}-\mathrm{C})$	2-1-6	$90.0{ }^{\circ}$	1.351
R15	$\Delta \theta(\mathrm{C}-\mathrm{Fe}-\mathrm{C})$	4-1-6	$90.0{ }^{\circ}$	1.351
R16	$\Delta \theta(\mathrm{C}-\mathrm{Fe}-\mathrm{C})$	4-1-8	$90.0{ }^{\circ}$	1.351
R17	$\Delta \theta(\mathrm{C}-\mathrm{Fe}-\mathrm{C})$	6-1-8	$90.0{ }^{\circ}$	1.351
R18	$\Delta \theta(\mathrm{C}-\mathrm{Fe}-\mathrm{C})$	2-1-10	$90.0{ }^{\circ}$	1.351
R19	$\Delta \theta(\mathrm{C}-\mathrm{Fe}-\mathrm{C})$	6-1-10	$90.0{ }^{\circ}$	1.351
R20	$\Delta \theta(\mathrm{C}-\mathrm{Fe}-\mathrm{C})$	8-1-10	$90.0{ }^{\circ}$	1.351
R21	$\Delta \theta(\mathrm{C}-\mathrm{Fe}-\mathrm{C})$	2-1-12	$90.0{ }^{\circ}$	1.351
R22	$\Delta \theta(\mathrm{C}-\mathrm{Fe}-\mathrm{C})$	4-1-12	$90.0{ }^{\circ}$	1.351
R23	$\Delta \theta(\mathrm{C}-\mathrm{Fe}-\mathrm{C})$	8-1-12	$90.0{ }^{\circ}$	1.351
R24	$\Delta \theta(\mathrm{C}-\mathrm{Fe}-\mathrm{C})$	10-1-12	$90.0{ }^{\circ}$	1.351
R25	$\Delta \theta(\mathrm{Fe}-\mathrm{C} \equiv \mathrm{N})$	1-2-3	180.0°	0°
R26	$\Delta \theta(\mathrm{Fe}-\mathrm{C} \equiv \mathrm{N})$	1-2-3	180.0°	90°
R27	$\Delta \theta(\mathrm{Fe}-\mathrm{C} \equiv \mathrm{N})$	1-4-5	$180.0{ }^{\circ}$	0°
R28	$\Delta \theta(\mathrm{Fe}-\mathrm{C} \equiv \mathrm{N})$	1-4-5	180.0°	90°
R29	$\Delta \theta(\mathrm{Fe}-\mathrm{C} \equiv \mathrm{N})$	1-6-7	180.0°	0°
R30	$\Delta \theta(\mathrm{Fe}-\mathrm{C} \equiv \mathrm{N})$	1-6-7	180.0°	90°
R31	$\Delta \theta(\mathrm{Fe}-\mathrm{C} \equiv \mathrm{N})$	1-8-9	$180.0{ }^{\circ}$	0°
R32	$\Delta \theta(\mathrm{Fe}-\mathrm{C} \equiv \mathrm{N})$	1-8-9	180.0°	90°
R33	$\Delta \theta(\mathrm{Fe}-\mathrm{C} \equiv \mathrm{N})$	1-10-11	$180.0{ }^{\circ}$	0°
R34	$\Delta \theta(\mathrm{Fe}-\mathrm{C} \equiv \mathrm{N})$	1-10-11	$180.9{ }^{\circ}$	90°
R35	$\Delta \theta(\mathrm{Fe}-\mathrm{C} \equiv \mathrm{N})$	1-12-13	180.0°	0°
R36	$\Delta \theta(\mathrm{Fe}-\mathrm{C} \equiv \mathrm{N})$	1-12-13	180.0°	90°

[^0]Table 3. Symmetry Coordinates applied to Ferrocyanide Complex Ion (S : the index number of symmetry coordinates, R : the index number of intennal coordinates listed in Table 2, Redundant coordinates of the angled bending deformations are not listed.)

${ }^{\text {" }} v_{\text {mc }}:$ Fe-C stretching mode. $v_{\text {cn }}: \mathrm{C} \equiv \mathrm{N}$ stretching mode, δ_{a} : angled bending mode, of: linear bending mode.
linear angle deformation has degrees of freedom of two. They were defined from an arbitrary reference atom chosen nearby linearly aligned three atoms.

Symmetry coordinates adapted for ferrocyanide are displayed in the non-normalized format in Table 3 with descriptions for the nature of vibrations in terms of the internal coordinates R defined in Table 2. A complete set of thirtythree symmetry coordinates numbered 1 to 33 was constructed eliminating all the redundant symmetry coordinates occurred from angled bending deformations. There are six
stretching modes (symbol name: v_{mc}) for the Fe-C stretchings numbered I to 6 , six stretching modes (symbol name: v_{in}) for the $\mathrm{C}=\mathrm{N}$ stretchings numbered 7 to 12 . nine bondangle deformation modes (symbol name: δ_{a}) for the angled C -Fe-C bending numbered 13 to 21 . and twelve linear angle deformation modes (symbol name: δ_{i}) for the linear $\mathrm{Fe}-\mathrm{C}=\mathrm{N}$ bending numbered 22 to 33 .

The force constants matrix in the Cartesian coordinate generated through density functional calculation has 780 elements overall which are composed of all the diagonal and half the off-diagonal elements. When it is transformed to the symmetry coordinate. it becomes a matrix with 561 elements. These are too many to account for, so reduced to a comparable number of force constants using a boundary value in the symmetry coordinate. The force constants matrix of 561 elements could be extracted to 60 elements when the absolute values less than 0.004 of the off-diagonal matrix elements are eliminated and all the diagonal matrix elements are included. This boundary value 0.004 was rather arbitrary chosen because the off-diagonal elements less 0.004 are presumed to be minimal enough to be neglected for the structural elucidation. In fact. applying these 60 elements to calculation gives almost the same results in frequencies and potential energy distributions as 561 elements are applied. Because the ferrocyanide complex ion is highly symmetric belonging to a point group O_{h}, these 60 elements actually correspond to 23 elements in the symmetry species coordinate as shown in Table 4 for a fully optimized structure, the geometry Opt. The force constants for geometry A. B. and C are displayed in Table 5, which were transformed to the symmetry coordinate from Cartesian coordinate. The matrix of these force constants was then transfomed back to a matrix in the Cartesian coordinate. then which was applied to calculate the frequencies using Wilson's GF matrix method. Using these values, the frequencies and potential energy distributions were obtained and given in Table 6 in terms of symmetry coordinates defined in Table 3.
The scaling factors are now well recognized to be transferable for the frequencies of organic functional groups. In this study. however, we did not apply any scaling factor, e.g., 0.96 . etc., for the frequency calculations even though the $\mathrm{C} \equiv \mathrm{N}$ stretching frequencies are calculated a little higher. The vibrational frequencies of both stretching and deformations involving the centered metal atom are calculated well behaving to the experimentally observed ones. Partly because we believe that the vibrational data for vibrations involving the transition metal-carbon bonding have not been widely accumulated from the density functional force field we are currently utilizing. Table 1 also strongly suggests that the bond distances are quite dependent on the functional basis set that is to be selected for calculation.

Results and Discussion

Geometry and DFT Calculations. It has been experimentally known that the equilibrium distances in the ground low spin state $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ ion are positioned between 1.90

Table 4. Symmetry Force Constants (mdyn / \AA, mdyn/rad, mdyn $\AA /\left(\right.$ rad j^{2}) obtained from Density Functional Calculation for fully Optimized Geometry Opt (Fe-C: $2.009 \AA, \mathrm{C} \equiv \mathrm{N}: 1.184 \AA$). (The bold faced symbol S represents the classification of vibrational modes for $\mathrm{M}(\mathrm{CN})_{0}{ }_{0}{ }^{-1}$ type ionic species upon I. Nakagawa and T. Shimanouchi in Reference 1.)

		$A_{1 g}$	$E_{\underline{\%}}$	$T_{\text {lu }}$	$A_{1 g}$	$E_{\underline{g}}$	$T_{\text {lu }}$	$T_{3,}$	T_{10}	$T_{\text {Iu }}$	$T_{1 \text { g }}$	T_{38}	T_{10}	T_{20}
		Fe-C Stretching			$\mathrm{C} \equiv \mathrm{~N}$ Stretching			$\mathrm{C}-\mathrm{Fe}-\mathrm{C}$ Angled Bending			$\mathrm{Fe}-\mathrm{C} \equiv \mathrm{N}$ Linear Bending			
		S 2	S_{4}	\$7	\$	S_{3}	S	S_{11}	S	S_{13}	\$s	S_{11}	S8	S 12
$v_{\text {ma }}\left(A_{1 g}\right)$	S_{2}	1.2599												
$v_{\mathrm{mc}}\left(E_{\mathrm{q}}\right)$	S_{4}		1.2126											
$\mathrm{v}_{\mathrm{mc}}\left(T_{\text {lu }}\right)$	S_{7}			0.7796										
$v_{\text {cn }}\left(A_{1!}\right)$	S_{1}	0.3053			17.4992									
$\mathrm{v}_{\mathrm{cn}}\left(E_{\underline{q}}\right)$	S_{3}		0.2220			17.0028								
$v_{\text {cn }}\left(T_{\text {lv }}\right)$	S_{6}			0.2134			17.0499							
$\delta_{\alpha}\left(T_{\text {Az }}\right)$	S_{11}							0.6010						
$\delta_{\alpha}\left(T_{10}\right)$	S ${ }_{9}$			-0.1154			0.1168		0.9292					
$\delta_{\alpha}\left(T_{\Delta v}\right)$	S_{13}									0.7420				
$\delta\left(T_{1 \mathrm{~g}}\right)$	S_{5}										0.3196			
$\delta\left(T_{2 \mathrm{~g}}\right)$	S_{10}							0.0282				0.4006		
$\delta\left(T_{\text {lu }}\right)$	S_{8}			0.0418			0.0328		-0.1017				0.4311	
$\delta\left(T_{2 u}\right)$	S_{12}									-0.1340				0.4036

Table 5. Symmetry Force Constants (mdyn/ \AA or equivalents) from Density Functional Calculations for Geometry A, B, and C , and Refined Force Constants of Geometry B through Non-linear least-square fitting

Symmetry Species	$\mathrm{S}_{\mathrm{j}}, \mathrm{S}_{\mathrm{j}}$	$\begin{aligned} & \text { Geometry } \mathbf{A} \\ & \text { Fe-C: } 1.90 \AA \\ & \mathrm{C} \equiv \mathrm{~N}: 1.18+\AA \end{aligned}$	$\begin{gathered} \text { Geometry B } \\ \text { Fe-C: } 1.91 \AA \\ \mathrm{C} \equiv \mathrm{~N}: 1.184 \AA \end{gathered}$	$\begin{gathered} \text { Geometry C } \\ \text { Fe-C: } 1.91 \AA \\ \mathrm{C} \equiv \mathrm{~N}: 1.190 \AA \end{gathered}$	Refined Force Constants of Geometry B
. $4_{1 g}$	\mathbf{S}_{1}, S_{1}	17.5531	17.5479	16.8620	16.840
	$\mathrm{S}_{1}, \mathrm{~S}_{2}$	0.3575	0.3531	0.3506	0.725
	S_{2}, S_{2}	2.3709	2.2437	2.2397	2.424
$E_{\underline{g}}$	$\mathrm{S}_{3}, \mathrm{~S}_{3}$	16.9657	16.9700	16.2922	16.270
	$\mathrm{S}_{3}, \mathrm{~S}_{4}$	0.3708	0.3563	0.3550	0.660
	S_{4}, S_{4}	2.3582	2.2298	2.2261	2.184
$T_{1 \underline{*}}$	S_{S}, S_{s}	0.3335	0.3329	0.3944	0.333
T_{10}	$\mathrm{S}_{6}, \mathrm{~S}_{6}$	16.9945	17.0000	16.3190	16.000
	S_{6}, S_{7}	0.3612	0.3465	0.3452	0.523
	$\mathrm{S}_{6}, \mathrm{~S}_{8}$	0.0382	0.0371	0.0378	0.038
	S_{6}, S_{9}	0.1701	0.1645	0.1637	0.165
	$\mathrm{S}_{7}, \mathrm{~S}_{7}$	1.6340	1.5371	1.5313	1.640
	$\mathrm{S}_{7}, \mathrm{~S}_{8}$	0.0437	0.0435	0.0431	0.038
	$\mathrm{S}_{7}, \mathrm{~S}_{9}$	-0.1110	-0.1117	-0.1130	-0.118
	$\mathrm{S}_{8}, \mathrm{~S}_{8}$	0.4813	0.4765	0.6000	0.448
	$\mathrm{S}_{8}, \mathrm{~S}_{9}$	-0.1626	-0.1568	- 0.0668	-0.129
	$\mathbf{S}_{\mathbf{S}}, \mathrm{S}_{9}$	0.8296	0.8429	0.9070	0.835
$T_{\text {z\% }}$	S_{10}, S_{11}	0.4457	0.4416	0.5653	0.407
	$\mathrm{S}_{10} \mathrm{~S}_{11}$	-0.0727	-0.0683	- 0.0042	-0.105
	$\mathrm{S}_{11}, \mathrm{~S}_{11}$	0.5822	0.5862	0.6166	0.553
$T_{2 u}$	S_{12}, S_{12}	0.4455	0.4417	0.5648	0.442
	S_{12}, S_{13}	-0.1881	-0.1829	-0.0938	-0.183
	$\mathrm{S}_{13}, \mathrm{~S}_{13}$	0.5723	0.5941	0.6561	0.594

and $1.98 \AA$ for $\mathrm{Fe}-\mathrm{C}$ and between 1.12 and $1.19 \AA$ for $\mathrm{C} \equiv \mathrm{N}$ depending on the positively charged counter-cations. Sano et al^{-1} chose the $\mathrm{Fe}-\mathrm{C}$ bond distance as 1.925 A and the $\mathrm{C} \equiv \mathrm{N}$ as $1.167 \AA$ to correlate the photoelectron spectrum of $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ to the molecular orbital calculation results.

Mandix et al. ${ }^{2 \prime}$ took the same bond distances as Sano et al. s for the electron density distributions from $a b$ initio HF calculation. Bolvin ${ }^{23}$ chose the $\mathrm{C} \equiv \mathrm{N}$ bond distance to a fixed $1.17 \AA$ for the calculation of $\mathrm{Fe}-\mathrm{C}$ distance with the complete active space (CAS) second-order perturbation function at a

Table 6. Observed and Calculated Vibrational Frequencies in cm^{-1} and Potential Energy Distributions for Geometry A, B, C and Opt using the Force Constants shown in Table 4 and 5

$\begin{aligned} & \text { Vib. Obs. }{ }^{a} \\ & \text { No. } \end{aligned}$		Geometry A		Geometry B		Geometry C		Geometry Opt	
		Calc.	$\begin{gathered} \text { PED } \\ \text { (greater than } 5 \% \text {) } \end{gathered}$	Calc.	PED (greater than 5%)	Calc.	PED (greater than 5%)	Calc.	PED (greater than 5%)
v_{1}	2098	2165.7	$98 v_{\text {vit }}\left(A_{\text {lq }}\right)$	2163.4	$98 \mathrm{v}_{\text {cin }\left(H_{1 g}\right)}$	2121.5	$98 \mathrm{v}_{\mathrm{or}}\left(A_{1 \underline{⿺}}\right)$	2145.7	$100 \mathrm{var}_{\mathrm{or}}\left(\mathrm{A}_{1 \mathrm{~g}}\right)$
v_{3}	2062	2128.7	$98 v_{\text {crit }}\left(E_{\text {\% }}\right)$	2127.6	$98 v_{\mathrm{cm}}\left(E_{\mathrm{g}}\right)$	2085.4	$98 \mathrm{van}\left(E_{q}\right)$	2121.2	$99 \mathrm{var}_{0}\left(E_{6}\right)$
v_{6}	2044	2117.8	$99 v_{\text {vit }}\left(T_{\text {lu }}\right)$	2117.3	$100 \mathrm{~V}_{\mathrm{ar}}\left(T_{\text {Iu }}\right)$	2074.7	$100 \mathrm{vatu}\left(T_{\text {lu }}\right)$	2115.4	$100 \mathrm{varl}_{\text {colu }}\left(T_{10}\right)$
$v=$	583	604.0	$\begin{aligned} & 43 \delta_{(}\left(T_{\mathrm{lu}}\right), 30 \delta_{\mathrm{u}}\left(T_{\mathrm{u}}\right), \\ & 16 v_{\mathrm{mc}}\left(T_{\mathrm{l}}\right) \end{aligned}$	597.4	$\begin{aligned} & 44 \delta_{(}\left(T_{\mathrm{w}}\right), 31 \\ & \delta_{d}\left(T_{\mathrm{l}}\right), 14 v_{\mathrm{mu}}\left(T_{1 \mathrm{u}}\right) \end{aligned}$		$\begin{aligned} & 55 \delta_{(}\left(T_{u \mathrm{u}}\right), 31 \delta_{c d}\left(T_{\mathrm{w} u}\right), \\ & 12 \mathrm{v}_{\mathrm{mc}}\left(T_{\mathrm{lv}}\right) \end{aligned}$	538.7	$51 \delta_{(}\left(T_{10}\right), 37 \delta_{d}\left(T_{10}\right)$
v_{10}	510	514.5	$57 \delta_{(}\left(T_{2 g}\right), 31 \delta_{d}\left(T_{2 g}\right)$	510.3	$56 \delta_{\text {(}}\left(T_{\text {cy }}\right), 31 \delta_{d}\left(T_{\text {ng }}\right)$	526.8		467.1	$60 \delta_{(}\left(T_{3 q}\right), 34 \delta_{d}\left(T_{3 q}\right)$
v_{12}		499.9	$61 \delta_{\wedge}\left(T_{24}\right), 16 \delta_{u}\left(T_{24}\right)$	497.2	$61 \delta_{(}\left(T_{\geq u}\right), 16 \delta_{u}\left(T_{2 u}\right)$	515.1	$73 \delta_{\text {(}}\left(T_{2 u}\right), 16 \delta_{c c}\left(T_{2 u}\right)$	466.5	$62 \delta_{(}\left(T_{30}\right), 21 \delta_{d}\left(T_{30}\right)$
v_{8}	416	417.8	$81 v_{\text {mu }}\left(T_{10}\right), 13 \delta\left\langle T_{14}\right)$	407.0	$83 v_{m s}\left(T_{\text {lu }}\right), 12 \delta\left(T_{1 u}\right)$	411.9	$84 \mathrm{v}_{\mathrm{wki}}\left(T_{\text {lu }}\right), 128\left(T_{\text {lu }}\right)$	300.3	$91 \mathrm{~V}_{\text {mux }}\left(T_{10}\right), 7 \delta\left(T_{10}\right)$
v_{2}	396	389.2	$96 v_{\mathrm{mm}}\left(A_{(\underline{q}}\right)$	379.0	$97 \mathrm{v}_{\mathrm{ms}}\left(4_{(\underline{\underline{2}} \text {) }}\right.$	378.5	$96 \mathrm{v}_{\text {mu }}\left(-A_{19}\right)$	285.8	$\left.98 \mathrm{vnm}^{(} A_{1 \underline{2}}\right)$
v_{4}	376	388.2	$96 v_{\text {mux }}\left(E_{q}\right)$	377.8	$96 v_{m s}\left(E_{q}\right)$	377.3	$96 \mathrm{vmic}\left(E_{\mathrm{g}}\right)$	280.0	$98 \mathrm{vmm}_{\mathrm{m}}\left(E_{\mathrm{z}}\right)$
v_{5}		3.42 .7	$98 \delta\left(T_{1 \mathrm{~g}}\right)$	341.8	$100 \delta\left(T_{\text {ly }}\right)$	370.7	$100 \delta_{(} T_{19}$)	330.2	$100 \delta\left(T_{19}\right)$
v_{9}		125.2	$79 \delta_{d}\left(T_{\text {Lu }}\right), 52 \delta\left(T_{\text {Iu }}\right)$	126.2	$77 \delta_{d(}\left(T_{10}\right), 51 \delta_{(}\left(T_{1 u}\right)$	145.8	$70 \delta_{d}\left(T_{\text {lu }}\right), 34 \delta\left(T_{\text {lu }}\right)$	130.3	$64 \delta_{d(}\left(T_{\text {lu }}\right), 45 \delta_{(}\left(T_{10}\right)$
v_{11}	105	114.0	$71 \delta_{d}\left(T_{\text {2y }}\right), 45 \delta\left(T_{2 g}\right)$	114.4		129.0	$69 \delta_{d}\left(T_{\text {29 }}\right) 298\left(T_{\text {28 }}\right)$	115.4	
v_{13}		77.1	$99 \delta_{d}\left(T_{2 u}\right), 55 \delta\left(T_{24}\right)$	78.8	$98 \delta_{\text {d }}\left(T_{2 u}\right), 53 \delta_{\text {(}}\left(T_{2 u}\right)$	95.1	$86 \delta_{d}\left(T_{\text {Iu }}\right), 29 \delta\left(T_{\text {zu }}\right)$		$85 \delta_{s(}\left(T_{2 u}\right), 44 \delta_{(}\left(T_{2 u}\right)$

${ }^{4}$ IR from reference 2 and Raman from reference 8.
single or double zeta basis set with/without polarization set. Calculated metal-ligand distances were ranging in 1.81 to 1.99 A for low spin ${ }^{1} \mathrm{~A}_{\mathrm{lg}}$ state of ferrocyanide depending on the function method and basis set chosen. Pierloot et al. ${ }^{2+}$ took the $\mathrm{Fe}-\mathrm{C}$ bond distance as $1.91 \AA$ or $1.93 \AA$ and the $\mathrm{C} \equiv \mathrm{N}$ as $1.17 \AA$ for the calculation of ligand field splitting energies. Therefore the $\mathrm{Fe}-\mathrm{C}$ bond distance in the ferrocyanide complex ion is recognized to have about 1.90 A .
Structural parameters of ferrocyanide optimized at different force fields are shown in Table 1. At Hartree-Fock level with the $6-31 \mathrm{G}^{* *}$ basis set, the Fe-C bond distance comes too long. and the $\mathrm{C} \equiv \mathrm{N}$ very tight. The results from MP2/6$31 \mathrm{G}^{* *}$ or $6-31+\mathrm{G}^{* *}$ basis set are shorter in Fe-C and too long in $\mathrm{C} \equiv \mathrm{N}$. At B3LYP level with the $6-3 \mathrm{IG}(3 \mathrm{df}, 3 \mathrm{pd})$ basis set. the bond $\mathrm{Fe}-\mathrm{C}$ distance becomes much closer than at HF level. and that the $\mathrm{C} \equiv \mathrm{N}$ is rather longer. With the $6.31+\mathrm{G}^{* *}$ basis set. the bond distances of two become a little longer. With the $6-31 \mathrm{G}^{* *}$ basis set. the bond distances of them become a little closer. Isolated cyanide anion $\mathrm{C} \equiv \mathrm{N}^{-}$shows a bond distance, $1.184 \AA$ when optimized with the functional. B3LYP/6-31G**. This shows that an optimized $\mathrm{C} \equiv \mathrm{N}$ distance in the ferrocyanide is almost the same as calculated in the isolated $\mathrm{C} \equiv \mathrm{N}^{-}$anion. So. we retained to utilize the functional B3LYP/6-31G** for the ferrocyanide system. Because this calculated bond distance for $\mathrm{Fe}-\mathrm{C}$ is rather extended over the usual metal-carbon distance in the metal hexacy ano complex ions, we have chosen more realistic bond length, 1.90 or $1.91 \AA$ for $\mathrm{Fe}-\mathrm{C}$. The calculated $\mathrm{C} \equiv \mathrm{N}$ bond distance. $1.184 \AA$ is rather longer than $1.17 \AA$ taken in the previous works.

The electronic energies ($\Delta E_{\text {efcc }}$) and the summations $\left(\Delta G_{T}\right)$ of electronic and thermal free energy for geometries \mathbf{A}, \mathbf{B}. and \mathbf{C} relative to the global minimum energy of fully optimized geometry Opt ($2.009 \AA$ for $\mathrm{Fe}-\mathrm{C}$. and $1.184 \AA$ for $\mathrm{C} \equiv \mathrm{N}$) at B3LYP/6-31G** level are shown in Table 1. The geometry of A . B , and C adapted for calculation is off about
$0.1 \AA$ in $\mathrm{Fe}-\mathrm{C}$ distances from optimized bond distance, therefore their free energies of formation are about 9 kcal mol higher than optimized. Actually. our force constant calculation has been perfomed on the domnhill side in the potential well. up by about $9 \mathrm{kcal} / \mathrm{mol}$ in the free energy from the minimum. This can cause a bit of off-symmetry in the force constant matrix. but it was small enough to be managed to handle. So. some of the force constants were averaged, but deviations were small enough less 1% and overall not significant.

Normal Mode Calculations. The symmetry force constants matrix for the geometry Opt is displayed in Table 4 in the matrix format of symmetry species coordinate. Table 4 shows only 13 diagonal and 10 off-diagonal elements in the matrix fommat. and other off-diagonal terms are ignored because they are near zero less than 0.004 . There are three blocks of off-diagonal terms. i.e.. 3 positive elements of stretchingstretching interactions. 4 (one negative and three positive) elements of stretching-bending interactions, and 3 negative elements of angled bending-linear bending interactions. These elements in the matrix have exactly the same arrangement corresponding to the results of I. Nakagava and T. Shimaouchi. ${ }^{1}$ The notations by them for symmetry coordinates are added to the column and row in the bold faced S for the convenience. The symmetry force constants of geometry \mathbf{A} \mathbf{B} and \mathbf{C} are given in Table 5. Calculated frequencies are shown for geometry A, B. C and Opt in Table 6 along with potential energy distributions.

Three frequencies of $\mathrm{C} \equiv \mathrm{N}$ stretching vibrations arise near $2100 \mathrm{~cm}^{-1}$ region, and highly localized as shown at the vibration numbers v_{1}, v_{3}, and v_{6}. The vibration v_{5} with $T_{1 g}$ symmetry of the linear bending deformations is also highly localized because it is a sole symmetry in this system, but it is inactive in IR or Raman. Two of the Fe-C stretching modes. $v_{\mathrm{mc}}\left(A_{1 \underline{g}}\right)$ and $v_{\mathrm{mc}}\left(E_{\mathrm{g}}\right)$, are heavily localized at the
vibration v_{s} and v_{4}. but the vibration v_{s} with $T_{1 u}$ symmetry is attributed mostly to $V_{\mathrm{mc}}\left(T_{\mathrm{lu}}\right)$ and partly about 10% to $\delta_{f}\left(T_{\mathrm{lu}}\right)$ of linear bending deformations. as well. The region near 500 cm^{-1} to $600 \mathrm{~cm}^{-1}$ is contributed mainly with linear bending deformations and partly with angled bending defornations. Only the vibration v_{7} is containing a contribution from v_{mc} (T_{lu}) about 10%. The low frequency region below $150 \mathrm{~cm}^{-1}$ is mainly from angled and linear bending deformations. The angled bending deformations contribute much more than the linear bending. however. In fact. except $T_{1 \mathrm{~g}}$ synmetry all the same symmetry species interacts more or less. Six terms out of total ten off-diagonal interaction constants are induced from interactions between $T_{1 u}$ symmetries, as can be seen in Table 4.
Extending of the Fe-C bond distance from $1.90 \AA$ to 1.91 A turns out to reduce the stretching frequencies of Fe-C. as expected. The stretching frequencies of $\mathrm{C}=\mathrm{N}$ bonds are unchanged basically considering that three modes of $\mathrm{C} \equiv \mathrm{N}$ stretching have the same symmetry with $\mathrm{Fe}-\mathrm{C}$ stretching and they can interact weakly 2 or 3% in potential energy distributions. But, it shows a mixed effect on two different deformations, i.e., weakening linear bending deformations and strengthening angled bending deformations. But. these effects are not much noticeable. Lengthening the $\mathrm{C} \equiv \mathrm{N}$ bond distance from $1.184 \AA$ to $1.190 \AA$, the bands attributed to Fe C stretching vibrations are unchanged almost. But, all deformations including angled and linear bending vibrations become stronger.
Viewing the PED values of geometry \mathbf{A} and \mathbf{B} on Table 6. the $\mathrm{Fe}-\mathrm{C}$ bond distance does not give much impact on the potential energy distributions. However. extending the $\mathrm{C} \equiv \mathrm{N}$ bond distance intensifies the separation of the linear bending and the angled bending deformations as seen in the cases of geometry \mathbf{B} and \mathbf{C}.

Table 4 and Table 5 display all effects on the force constants caused from geometrical displacements of the bond distance in $\mathrm{Fe}-\mathrm{C}$ or $\mathrm{C}=\mathrm{N}$. Every diagonal term depends on its bond distance. Among three blocks of off-diagonal terms, 3 positive terms of stretching-stretching interactions, and 3 negative terms of angled bending-linear bending interactions are dependent upon the bond distance. When the stretchingbending interaction terms. 4 (one negative and three positive) elements are less sensitive to the displacement of the bond distance. They all belong to $T_{l u}$ symmetry. i.e., $\left(\mathbf{S}_{6}, \mathbf{S}_{8}\right)$. $\left(\mathbf{S}_{6}, \mathbf{S}_{9}\right) .\left(\mathbf{S}_{7}, \mathbf{S}_{8}\right)$ and $\left(\mathbf{S}_{7}, \mathbf{S}_{9}\right)$ shown in Table 5.
Viewing PED of the geometry Opt shown in Table 6, the stretching modes of $\mathrm{Fe}-\mathrm{C}$ and $\mathrm{C} \equiv \mathrm{N}$ are highly localized compared to other geometries because the Fe-C bond distance is much longer than others. It turns out much less interaction force constants between two stretching modes and between angled and linear bending modes as can be seen in Table 4 . Lengthening of the $\mathrm{Fe}-\mathrm{C}$ bond distance has increased the angled bending force constants and decreased the linear bending force constants. These effects are represented in Table 6 as the frequency down-shifts for the vibration number v_{s}, v_{7}, v_{10} and $v_{1 s}$ in great extents and as the frequency up-shifts for the vibration number v_{9}, v_{11} and

Table 7. Observed and Calculated Vibrational Frequencies in cm^{-1} and Potential Energy Distributions through Non-linear least-square fitting Refinement for Geometry \mathbf{B}

Vib. No.	Obs. ${ }^{\text {a }}$	Calc.	PED (greater than 5\%)		Vibration
v_{1}	2098	2098.0	$100 \mathrm{v}_{\mathrm{va}}\left(\mathrm{A}_{1 \mathrm{z}}\right)$		Raman
v_{3}	2062	2062.0	$100 v_{01}\left(E_{\mathrm{q}}\right)$		Ramar
$1 / 6$	2044	2044.0	$100 \mathrm{v}_{\mathrm{va}}\left(T_{\text {tu }}\right)$		IR
v	583	583.0	$41 \delta\left(T_{10}\right)$	$32 \hat{\delta}_{\delta}\left(T_{10}\right) 20 \nu_{m i s}\left(T_{1 u}\right)$	IR
v_{10}	510	510.0	$53 \delta\left(T_{2 k}\right)$	$30 \delta_{d}\left(T_{\text {ck }}\right)$	Raman
v_{12}		497.2	$61 \delta\left(T_{u v}\right)$	$16 \delta_{d}\left(T_{2 u}\right)$	inactive
$1 / 8$	416	416.0	$76 v_{\text {tus }}\left(T_{1 u}\right)$	$15 \delta\left(T_{10}\right)$	IR
v_{2}	396	395.6	$97 v_{\text {tui }}\left(4_{19}\right)$		Raman
v_{4}	376	375.7	$97 v_{\text {tui }}\left(E_{\mathrm{g}}\right)$		Raman
v_{s}		341.8	$100 \delta\left(T_{1 \underline{k}}\right)$		inactive
v^{6}		127.4	$74 \delta_{\delta}\left(T_{10}\right)$	$49 \delta\left(T_{\text {Lv }}\right)$	IR
v_{11}	105	105.0	$72 \delta_{d}\left(T_{3 g}\right)$	$50 \delta\left(T_{3 q}\right)$	Raman
v_{13}		78.8	$98 \delta_{d}\left(T_{2 u}\right)$	$53 \delta\left(T_{30}\right)$	inactive

${ }^{4}$ IR from reference 2 and Raman from reference 8.

v_{13} in minor amounts.

Non-Linear Least Square Fitting. The least square fitting was carried out to minimize the square of differences of experimentally observed frequencies from calculated ones through refining the force constants. The minimization was done by the conjugate gradient method with a cube interpolation. The fitted frequencies and potential energy distributions for geometry \mathbf{B} are given in Table 7. The PED values are very similar to those of Geometry B unfitted. But, the refined force constants in the symmetry coordinates shown in Table 5 are representing some singularities compared to the unfitted geometry \mathbf{B}. The interaction terms between $\mathrm{Fe}-\mathrm{C}$ stretching and $\mathrm{C} \equiv \mathrm{N}$ stretching vibrations are increased nearly two times. Other interaction force constants are changed slightly.

Finding Internal Force Constants in the Modified UreyBradley Force Field. The modified Urey-Bradley type potential function employed by I. Nakagava and T. Shimanouchi for $\mathrm{M}(\mathrm{CN}) 6^{x-}$ type octahedral metal cyanide species was represented as

$$
\begin{aligned}
2 \mathrm{~V}= & \sum K_{1}\left(\Delta r_{i}\right)^{2}+\sum K_{2}\left(\Delta r_{i}\right)^{2}+\sum H_{1} r_{0}^{2}\left(\Delta \alpha_{j l}\right)^{2} \\
& +\sum H_{2} r_{0} r_{0}\left(\Delta \beta_{i}\right)^{2}+\sum F\left(\Delta q_{l k}\right)^{2}+(\text { linear terms }) \\
& +2 \sum p_{1}\left(\Delta r_{i}\right)\left(\Delta r_{i}\right)+2 \sum p_{2}\left(\Delta r_{i}\right)\left(\Delta r_{i}^{\prime}\right)
\end{aligned}
$$

where, r_{i} and r_{i}^{\prime} are $\mathrm{Fe}-\mathrm{C}$ and $\mathrm{C} \equiv \mathrm{N}$ bond lengths with equilibrium distances, r_{i} and $r_{i}^{\prime} ; \alpha_{j k} \mathrm{C}$-Fe-C angled bond angles: $\beta_{i} \mathrm{Fe}-\mathrm{C}=\mathrm{N}$ linear bond angles: $q_{j k}$ distances between non-bonded carbon atoms. The constants K_{1} and K_{2} are $\mathrm{Fe}-\mathrm{C}$ and $\mathrm{C} \equiv \mathrm{N}$ bond stretching force constants. H_{1} and $\mathrm{H}_{2} \mathrm{C}-\mathrm{Fe}-\mathrm{C}$ and $\mathrm{Fe}-\mathrm{C} \equiv \mathrm{N}$ bending force constants. F the repulsive force constant, and p_{1} and p_{2} the interaction force constants between two Fe-C bonds on the same diagonal and between adjacent $\mathrm{Fe}-\mathrm{C}$ and $\mathrm{C} \equiv \mathrm{N}$ bonds, respectively. The last two interaction terms are added to the ordinary Urey-Bradley potential functions.

To obtain the force constants employed in the modified

Table 8. Force Constants (mdyn/A or equivalents) in the Intemal Coordinates of the Modified Urey-Bradley Force Field for Geometry A, B, C and Opt, and the Values in Reference 1

Intemal Coordinates in the Modified UB Force Field	Geometry \mathbf{A} Fe-C: $1.90 \AA$ $\mathrm{C} \equiv \mathrm{N}: 1.184 \AA$	$\begin{gathered} \text { Geometry B } \\ \text { Fe-C: } 1.91 \AA \\ \mathrm{C} \equiv \mathrm{~N}: 1.184 \AA \end{gathered}$	Geometry C Fe-C: $1.91 \AA$ $\mathrm{C} \equiv \mathrm{N}: 1.190 \mathrm{~A}$	$\begin{aligned} & \text { Geometry Opt } \\ & \text { Fe-C: } 2.009 \AA \\ & \text { C } \equiv \text { N: } 1.184 \AA \end{aligned}$	Force Constants employed in the Modified UB Force Field
$\triangle \mathrm{dr}(\mathrm{Fe}-\mathrm{C})$	1.9983	1.8857	1.8810	1.004	$K_{1}=2.4828^{\text {b }}$
$\Delta \mathrm{r}(\mathrm{C} \equiv \mathrm{N})$	17.0780	17.0807	16.4005	17.1164	$K_{2}=15.1{ }^{\text {b }}$
$\Delta \alpha(\mathrm{C}-\mathrm{Fe}-\mathrm{C})^{a}$	$\begin{aligned} & 0.1941\left(T_{10}\right) \\ & 0.1256\left(T_{28}\right) \\ & 0.1228\left(T_{\hat{0}}\right) \end{aligned}$	$\begin{aligned} & 0.1953\left(T_{\mathrm{lu}}\right) \\ & 0.1250\left(T_{2 \mathrm{p}}\right) \\ & 0.1271\left(T_{2 \mathrm{u}}\right) \end{aligned}$	$\begin{aligned} & 0.2125\left(T_{10}\right) \\ & 0.1329\left(T_{2 \mathrm{q}}\right) \\ & 0.1437\left(T_{2 \mathrm{v}}\right) \end{aligned}$	$\begin{aligned} & 0.2653\left(T_{14}\right) \\ & 0.1840\left(T_{2 \mathrm{l}}\right) \\ & 0.2189\left(T_{24}\right) \end{aligned}$	$H_{1}=0.039^{\circ}$
$\Delta \beta(\mathrm{Fe}-\mathrm{CO} \equiv \mathrm{N})$	0.1896	0.1871	0.2337	0.1731	$H_{2}=0.172^{\text {b }}$
$\left.\Delta c^{(C)} \mathrm{C} \cdot \mathrm{C}\right)$	-0.0649	-0.0650	-0.0657	-0.0638	$F=0.111^{\circ}$
$\Delta \mathrm{r}(\mathrm{Fe}-\mathrm{C}, \mathrm{Fe}-\mathrm{C})$	-0.2015	-0.2005	-0.2033	-0.2579	$p_{1}=-0.172^{\circ}$
$\Delta \mathrm{r}(\mathrm{Fe}-\mathrm{C}, \mathrm{C} \equiv \mathrm{N})$	0.3632	0.3520	0.3503	0.2469	$p_{2}=0.4{ }^{\text {c }}$

"Because the internal coordinates of the angled bending deformations are not linearly independent values converted to hold the same unit in the symmetry coordinate are shown instead. "adjusted values for the calculated frequencies to fitt to the observed frequencies. "fixed to predetermined values.

Urey-Bradley type potential function the input file for generating the symmetry coordinates in Table 3 was partly modified. The stretching coordinates of $\mathrm{Fe}-\mathrm{C}$ and $\mathrm{C} \equiv \mathrm{N}$ bonds and the linear bending coordinates of $\mathrm{Fe}-\mathrm{C}=\mathrm{N}$ bond are set to their internal coordinates (\mathbf{R}) because the number of symmetry coordinates is the same as that of internal coordinate, and they are independent. However, the symmetry coordinates for the angled bending coordinates were used as displayed in Table 3 because the internal coordinates of the angled bending deformations are not linearly independent. Therefore the force constants. H_{1}, of the angled bending deformations cannot be evaluated independently in the internal coordinates due to the redundancy. Applying this modified input coordinate file, the values of $K_{1} . K_{2}$, and H_{2} can be obtained on the diagonal terms of the force constant matrix directly. These are listed in Table 8.
Values for the interaction terns can be calculated using equations of $F_{i j}$ elements shown in Table 5 . The F value was obtained using the ($\mathbf{S}_{7} . \mathrm{S}_{9}$) interaction term in the symmetry coordinates which was defined to $0.9 r_{0} F$. The ($\mathbf{S}_{7}, \mathbf{S}_{9}$) term is generated from an interaction between the $\mathrm{Fe}-\mathrm{C}$ stretching vibration and the C - $\mathrm{Fe}-\mathrm{C}$ angled bending deformation with $T_{1 u}$ symmetries. The Fe-C stretching vibration with $T_{\text {lu }}$ symmetry is that two carbon atoms on a certain 4 -fold rotational axis move forvard and the centered metal atom backward on the axis, and others are fixed. The C-Fe-C angled bending deformation with T_{14} synmetry is that four carbon atoms perpendicular to a certain 4 -fold rotational axis move backward parallel to that axis. the centered metal atom forvard on that axis. Combining both of symunetry coordinates results in a vibrational motion of only six carbon atoms holding a centered metal atom and six nitrogen atoms at fixed positions. Two carbon atoms on the same diagonal move forward and other four carbon atoms backward, or vice versa. This motion could be regarded as an interaction of non-bonded carbon atoms.
The interaction constants, p_{2} between adjacent $\mathrm{Fe}-\mathrm{C}$ and $\mathrm{C} \equiv \mathrm{N}$ stretching are present in terms of $\left(\mathrm{S}_{1} . \mathbf{S}_{2}\right) .\left(\mathbf{S}_{3} . \mathbf{S}_{4}\right)$ and ($\mathbf{S}_{6}, \mathbf{S}_{7}$) interactions crossed in the same symmetry block in

Table 4. As these values are quite similar to each other. so averaged to give p_{2}. The effect of this p_{2} interaction constant is marginal to the $\mathrm{Fe}-\mathrm{C}$ or $\mathrm{C}=\mathrm{N}$ stretching vibrations. Coupling of these two modes is not significant. usually negligible even though its value is near 0.35 .
The interaction constants. p_{1} are embedded in ($\mathbf{S}_{2} . \mathbf{S}_{2}$), ($\mathbf{S}_{4}, \mathbf{S}_{4}$) and ($\mathbf{S}_{7}, \mathbf{S}_{7}$) as indicated in Table 5. It was defined as an interaction between two $\mathrm{Fe}-\mathrm{C}$ stretching vibrations on a 4 -fold rotational axis in the octahedral geometry. The symmetry coordinate of $v_{\text {mc }}\left(A_{1_{0}}\right)$ in Table 3 was represented as $+\mathrm{RI}+\mathrm{R} 2+\mathrm{R} 3+\mathrm{R} 4+\mathrm{R} 5+\mathrm{R} 6$. and $\nu_{\mathrm{mc}}\left(E_{\mathrm{g}}\right)$ as $+2 \mathrm{R} 1-\mathrm{R} 2-\mathrm{R} 3+$ 2R4-R5-R6. Mixing of two coordinates with different symmetries could end to $\mathrm{RI}+\mathrm{R} 4$. It is an extending motion of only two $\mathrm{Fe}-\mathrm{C}$ bonds, and any other atoms remaining unchanged in position. The values of p_{1} were obtained for two symmetry species. i.e., $A_{1 g}$ and E_{g}. respectively. Then. the p_{1} of E_{g} symmetry was subtracted from the p_{1} of $A_{1 \mathrm{~g}}$ symmetry to get as the true value of p_{1}. This value was signed negative because this motion is unfavorable to symmetry.
The force constants, H_{1} of $\mathrm{C}-\mathrm{Fe}-\mathrm{C}$ angled bending deformations are also embedded in ($\mathbf{S}_{9}, \mathbf{S}_{9}$) of $T_{14,}\left(\mathbf{S}_{11} \cdot \mathbf{S}_{11}\right)$ of $T_{2 g}$ and ($\mathrm{S}_{13} . \mathrm{S}_{13}$) of $T_{3 \mathrm{~s}}$ symmetry in the symmetry coordinates. For three symmetries. values of H_{1} were calculated using F previously obtained. and listed in Table 8. Because the internal coordinates of angled bending deformations have 3 redundant coordinates. it is not possible to get the force constant in the internal coordinates. Therefore the H_{1} values for three symmetry coordinates were obtained, instead. The force constants of angled bending deformations were obtained about 3 to 5 times higher dependent on the symmetry than the value by I. Nakagava and T. Shimanouchi. In other study ${ }^{6}$ of ferricyanide. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$, by I. Nakagawa and T . Shimanouchi, H_{2} value was reported 0.8 which is very close to our value of angled bending deformation with $T_{1 \mathrm{~g}}$ symmetry. (Table 4 The interaction constant F for non-bonded carbon atoms is about half comparing to their value. The values of the interaction constants, p_{1} and p_{2} obtained in this work are similar to those.

Table 9. Valence Force Constants (mdyn/Å or equivalents) in the General Quadratic Valence Force Field for Geometry A, B, C and Opt and Retined Valence Force Constants of Geometry B

Symmetry	Geometry Geometry Geometry Geometry				Refined
F Matrix Elements ${ }^{\alpha}$	A	B	C.	Opt	Constants of Geometry B
$F_{\text {FeC }}$	1.9982	1.8858	1.8810	1.0040	1.952
$F_{C O} \equiv$	17.0780	17.0813	16.4006	17.1091	16.230
$F^{\circ} \mathrm{C=S} \mathrm{C} \mathrm{C}^{\prime} \mathrm{N}$.	0.0979	0.0963	0.0950	0.0827	0.095
$F^{\mathrm{t}} \mathrm{C=SON} \mathrm{C}$	0.0835	0.0813	0.0816	0.0592	0.230
	0.0021	0.0023	0.0023	0.0079	0.040
$F^{\mathrm{t}-\mathrm{CFeCO}}$	0.3642	0.3487	0.3497	0.2244	0.312
$F_{\text {FeCCOS }}$	0.3638	0.3509	0.3494	0.2316	0.602
	-0.0022	-0.0005	-0.0007	0.0139	0.011
$F^{\mathrm{t}} \mathrm{Fe-COES}^{\text {c }}$	0.0026	0.0044	0.0042	0.0182	0.079
$F_{\alpha}-F_{\alpha \alpha}{ }^{\prime \prime}$	0.7010	0.7185	0.7816	0.8356	0.715
$\underline{E a t a s}^{\prime}-F_{\text {aut }{ }^{\prime \prime}}$	0.0643	0.0622	0.0627	0.0468	0.060
$F_{\alpha}-F_{\alpha \alpha{ }^{\prime \prime \prime}}$	0.6416	0.6523	0.6991	0.7183	0.634
F_{β}	0.4265	0.4232	0.5311	0.3887	0.407
$F_{\text {F } \beta^{\prime}}$	0.0369	0.0359	0.0513	0.0286	0.038
$F_{\beta \beta}{ }^{\prime}$	0.0280	0.0272	0.0427	0.0203	0.018
$F_{\beta \cdot \beta^{\prime \prime \prime}}$	0.0089	0.0087	0.0088	0.0069	0.002
$F_{\alpha \beta^{\prime}}$	-0.0802	-0.0772	-0.0294	-0.0487	-0.081
$F_{\alpha \beta}{ }^{\prime}$	-0.0438	-0.0430	-0.0273	-0.0346	-0.029
$F_{\alpha \beta \beta^{\prime \prime \prime}}$	0.0045	0.0046	0.0048	0.0057	0.010
$F_{C O} \mathrm{~S}, \beta^{\prime}$	0.0135	0.0131	0.0134	0.0116	0.013
$F_{C=\alpha^{\prime}}$	0.0850	0.0822	0.0819	0.0584	0.082
$F_{C O} ¢$					
$F_{\text {FeCl }}{ }^{\text {a }}$	0.0155	0.0154	0.0152	0.0148	0.013
$F_{\text {FeCs }}{ }^{-}$	-0.0555	-0.0559	-0.0565	-0.0577	-0.059
$F_{\text {FeCex }}$					

"from Reference 12.

Finding Valence Force Constants in the General Quadratic Valence Force Field. The force constants in the internal coordinates are more informative than symmetry force constants because of their transferability. The valence force constants in the general quadratic valence force field were obtained and given in Table 9 as done for the same symmetry species, ${ }^{1}=\mathrm{Cr}(\mathrm{CO})_{6}$. Considering the geometry \mathbf{A}. B. C and Opt in Table 9, one can notice that the Fe-C bond distance gives much milder impacts on the force constants of all, but the $\mathrm{C} \equiv \mathrm{N}$ bond distance does stronger on the selected force constants.

The interaction constants between stretching and stretching are not much subject to change upon geometrical displacement as can be seen in Table 9. The cis interactions.
 zero. In the study ${ }^{12}$ of $\mathrm{Cr}(\mathrm{CO})_{6}, F^{\mathrm{c}} \mathrm{Cu}, \mathrm{C}$ - was obtained about $0.2 \mathrm{mdyn} / \AA$ which is nearly twice of ferrocyanide. Other two cis interactions were also closely negligible in $\mathrm{Cr}(\mathrm{CO})_{6}$. Among the trons interactions, the constant $F_{\mathrm{Fe}-\mathrm{Ce} . \mathrm{CC}}^{\mathrm{t}}$ has a significant value of about $0.35 \mathrm{mdyn} / \AA$. but other two trans constants $F_{\mathrm{C}=\mathrm{N} . \mathrm{C}=\mathrm{N}}^{\mathrm{t}}$ and $F_{\mathrm{Fe} \cdot \mathrm{C}, \mathrm{C}=\mathrm{N}^{\prime}, \text { are relatively small. The }}$ $F_{\mathrm{Fe}, \mathrm{C}, \mathrm{C}=\mathrm{y}}$ is about $0.35 \mathrm{mdyn} / \AA$ for three geometries, but through the least-squares refinement to experimental frequ-
encies it results in $0.602 \mathrm{mdyn} / \AA$ as can be seen in the rightmost column in Table 9, which is not far from $0.68 \mathrm{mdyn} / \AA$ of $\mathrm{Cr}(\mathrm{CO})_{6}$

When weakening the $\mathrm{C} \equiv \mathrm{N}$ bond order from geometry B to C, the force constants of angled bending $\left(F_{(\alpha)}\right)$ and linear bending (F_{β}) deformations are getting significantly increased. Therefore the angled bending or linear bending deformations are strongly dependent on the $\mathrm{C} \equiv \mathrm{N}$ bond distance as can be confomed from calculated frequencies in Table 6. The interaction force constants ($F_{\alpha \beta j^{\prime}}$ and $F_{\alpha \beta \beta^{\prime}}$) between angled bending and linear bending deformations are small enough, and they are also dependent on the distance of $\mathrm{C} \equiv \mathrm{N}$ as much. The interaction force constants between stretch (Fe-C or $\mathrm{C} \equiv \mathrm{N}$) and bending (angled or linear) are all small. and very insensitive to the geometrical displacement. The stretch-
 $F_{\mathrm{Fe} \cdot \mathrm{C}\left(x^{*}\right)}$) are larger than the stretch-linear bending interactions ($F_{C N \cdot \beta}$ and $F_{\mathrm{Fe} \cdot \mathrm{C}, \beta}$). This is in the same manner with the case ${ }^{12}$ of $\mathrm{Cr}(\mathrm{CO})$.

Refined force constants of geometry \mathbf{B} through least-square fitting procedure using experimentally observed frequencies shown in Table 7 are similar to valence force constants of geometry B except several force constants. The constants $F_{\mathrm{Fe}-\mathrm{C}}$ and F_{C-v} are calculated to 1.952 and $16.230 \mathrm{mdyn} / \AA$, respectively. Reported values ${ }^{10}$ previously for ferrocyanide ion were 1.99 and 15.52 , respectively. which were obtained using 10 -parameter potential function in the valence force field. The value of $F_{C=N}$ is a little lower than usual, partly because we have chosen a bit longer bond distance for $\mathrm{C} \equiv \mathrm{N}$, $1.184 \AA$. The linear bending force constants ($F_{\beta}, F_{\beta \beta}$. $F_{\beta \beta^{\circ}}$, and $F_{\beta \beta^{\prime \prime \prime}}$) and the interaction constants ($F_{(C N 1}^{C} \mathrm{CN}^{\prime}$ and F^{c} covcon) are comparable to the values reported ${ }^{101}$ The
 ion. ${ }^{111(\mathrm{bj})}\left[\mathrm{Fe}(\mathrm{CN}) 6^{3-}\right.$. were evaluated to 0.2 and $0.2 \mathrm{mdyn} / \AA$. respectively. In this study of ferrocyanide. these interaction constants come out to 0.230 and $0.602 \mathrm{mdyn} / \AA$, respectively.

Conclusions

Vibrational properties of ferrocyanide complex ion, $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$. have been studied based on the force constants obtained from the density functional calculations at B3LYP/ $6-31 \mathrm{G}^{* *}$ level. This study was conducted by means of the normal mode analysis through Wilson's GF matrix method using new bond angle and linear angle intental coordinates recently developed. Three different geometries with moderate bond distances have been adapted to obtain the effects of geometrical displacements. The density functional calculations at this level reproduced vibrational frequencies of ferrocyanide adequately. The refined force constants in the symmetry coordinate as well in the intennal coordinate were also attempted to retrieve using experimentally observed frequencies by non-linear least-square fitting method.

The intemal force constants were evaluated in the general quadratic valence force field and the modified Urey-Bradley force field. In the modified Urey-Bradley force field, the
angled bending force constants previously reported were about five times underestimated, but the interaction constant for non-bonded carbon atoms is about two times overestimated. The values of the interaction constants, p_{1} and p_{2} obtained from density functional force field are similar to those employed previously. In the valence force field. the stretch-stretch interaction and stretch-bending interaction constants are not sensitive to the geometrical displacement in the valence force field. Most of interaction force constants of ferrocyanide are comparable to those of $\mathrm{Cr}(\mathrm{CO})_{6}$ well studied. and could be regarded to be transferable appropriately to other hexacyano transition metal complexes.
Acknowledgment. This paper is dedicated to Prof. Kyung-Hoon Jung on the occasion of his 65 th anniversary.

References

1. Nakagawa. I.: Shimanouchi. I. Spectrochim. Acta 1962. 18. 101.
2. Jones. L. H. Inorg Chem. 1963. 2. 777.
3. Bloor D. J. Chem. Phos. 1964, 41. 2573.
4. Nakagawa, I.: Shimanouchi, T. Spectrochim. Acta 1966, 22, 1707.
5. Nakagawa, I.: Shimanouchi. T.: Yamasaki, K. Inorg (Them. 1968. 7.1332.
6. Nakagawa. I.: Shimanouchi. T. Spectrochim Acta 1970. 26.1. 131.
7. Swansen. B. I.: Jones. L. H. J. Chem. Phvs. 1970. 53.3761.
8. Griffith. W. P.: Tumer G. T. J. Chem. Soc. f.A) 1970.858.
9. (a) Swanson, B. I., Jones, L. H. J. Chem. Phes. 1971. 55, 4174. (b) Jones, L. H.: Swanson, B. I.': Kubas. G. J. J. Chem. Phas. 1971. 55.4174 .
10. Hipps. K. W.: Williams. S. D.: Mazur. U. Inorg. Chem. 1984. 33. 3500.
11. (a) Swanson, B. I.: Jones, L. H. Horg. Chem. 1974. 13. 313. (b) Jones, L. H.: Swanson B. I. Acc. Chem. Res. 1976.9. 128.
12. Jones, L. H.; McDowell, R. S.: GoldBlatt. M. Ihorg. Chem. 1969. 8.2349.
13. (a) Fan. L.: Ziegler, T. J. Phys. Chem. 1992, 96. 6937. (b) Sosa, C.: Andzelm. J.: Elkinı. B. C.: Wimmer. E.: Dobbs. K. D.: Dixon. D. A. J. Phts. Chent. 1992. 96.6630.
14. (a) Bérces. A.: Ziegler. T.: Fan. L. J. Phws. Chem. 1994. 98.1584. (b) Bérces. A.: Ziegler, T. J. Phys. Chem. 1995. 99, 11417. (c) Ziegler. T. In Density Finctional Methods in Chemisty and Materials Science: Springborg. M.. Ed.; John Wiley and Sons: U.K.. 1997: p 69.
15. Lee. C.: Yang. W.: Parr. R. G. Ptrys. Rev: B 1988. 37. 785.
16. Lee. S.-H.: Krimm. S. Biopolnmer 1998. +8. 283.
17. (a) Durig, J. R.: Yu, Z.; Guirgis, G. A. J. Phys. Chem. A 2000.104. 741. (b) Park. S.-K.; Lee, N.-S.; Lee, S.-H. Bull. Korean Chem. Soc. $2000,21,959$.
18. Lee. S.-H.: Palmo. K.: Krimm. S. J. Comput. Chen. 1999. 20. 1067.
19. Rauhut. G.: Pulay. P. J. Phws. Chen. 1995. 99. 3093.
20. Frisch. M. J.; Trucks. G. W.: Schlegel. H. B.; Scuseria, G. E.: Robb, M. A.; Cheeseman. J. R.: Zakrzewshi, V. G.: Montgomery, J. A.. Jr; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam. J. M.: Daniels. A. D.: Kudin. K. N.: Strain. M. C.: Farkas. O.: Tomasi. T.: Barone. V.: Cossi. M.: Cammi. R.: Mennueci. B.: Pomelli. C.: Adamo. C.: Clifford. S.: Ochterski. T.: Petersson1. G. A.; Ayala. P. Y.; Cui, Q.: Morokuma. K.: Malick. D. K.: Rabuck. A. D.; Raghavachari, K.; Foresman. J. B.; Cioslowski. J.; Ortiz, J. V.: Baboul. A. G.: Stefanov. B. B.; Liu. G.: Liashenko. A.: Piskorz. P.: Komaromi. I.: Gomperts. R.: Martin. R. L.: Fox. D. T.: Keith. I.: Al-Laham. M. A.: Peng. C. Y.: Nanayakkara. A.: Gonzalez. C.: Challacombe. M.: Gill. P. M. W.: Johnson. B.: Chen, W.: Wong, M. W.: Andres, J. L.: Gonzalez, C.; HeadGordon. M: Replogle, E. S.; Pople. J. A. Gaussian 98. Revision A.7; Gaussian, Ine.: Pittsburgh. PA. 1998.
21. Sano. M.: Kashiwagi. H.: Yamatera. H. Inorg. Chen. 1982. 21. 3837.
22. Mandix. K.: Hohanson. H. J. Phys. Chen. 1992. 96.7261.
23. Bolvin. H. J. Phys. Chem. A 1998. 102, 7525.
24. Pierloot, K.; Praet, E. V.: Vanquickenborne, L. G.: Roos, B. O. d. Phus Chem. 1993, 97. 12220.

[^0]: ${ }^{a} \Delta \mathrm{r}$: stretching of a bond length, $\Delta \theta$; bending of a bond angle.

